BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP/2023)

CLASS: BTECH SEMESTER: VI BRANCH: ECE SESSION: SP/2023

SUBJECT: EC359N INFORMATION THEORY AND CODING

TIME: 02 Hours FULL MARKS: 25

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 5 marks and total 25 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

Q.1(a)	Consider a DMS with source probabilities {0.30, 0.25, 0.20, 0.15, and 0.1. Determine	Marks [2]	CO CO1	BL I (R)
Q.1(b)	its source entropy, $H(X)$. Also, define entropy is a concave function. Show that entropy is bounded as $0 \le H(X) \le \log_2 K$, when K is the no. of symbols.	[3]	CO1	II (U)
Q.2(a)	Identify, which of the following codes, C1={00, 01, 10, 11} and C2={0,100, 110, 111} satisfy Kraft inequality?	[2]	CO1	III (A)
Q.2(b)	If X and Y are two discrete random variables with joint probability mass function $P(x, y)$ and $P(x)$ & $P(y)$ their marginal probability mass functions, then prove that $H(X,Y)=H(X)+H(Y X)$	[3]	CO1	IV (A)
Q.3(a) Q.3(b)	Demonstrate the instantaneous code with a suitable example. Design Shannon-Fano-Elias code on above source distribution given in Q.1(a). Also determine its average code word length.	[2] [3]	CO1 CO1	II (U) VI(C)
Q.4(a) Q.4(b)	Outline the properties of binary erasure channel. Illustrate the information capacity theorem.	[2] [3]	CO2 CO2	II (U) II (U)
Q.5(a) Q.5(b)	Write the expression for channel capacity corresponding to Shannon limit. Two binary symmetric channels are connected in cascade.	[2] [3]	CO2 CO2	II (U) V (E)
	i/p p_{SC2} p_{SC2}			

Determine the channel capacity of above cascaded connection if the transition probability of each BSC channel is p.

:::::24/02/2023:::::M