BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

		(END SEMESTER EXAMINATION)			
CLASS: BRANCH	BTECH : ECE		NESTE SION		
TIME:	SUBJECT: EC359N INFORMATION THEORY AND CODING 3 Hours FU		LL MARKS: 50		
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 					
Q.1(a)	0.16, 0.07, 0.04	an coding algorithm. Consider a DMS with probabilities 0.37, 0.33, , 0.02 and 0.01, respectively. Construct Huffman coding for the DMS code efficiency.	[5]	CO 01	BL 02
Q.1(b)	Prove that the chain rule for entropy is given by $H(X_1, X_2,, X_n) = \sum_{i=1}^n H(X_i X_{i-1},, X_1)$			01	04
Q.2(a)	given by 1.44 S/	nannel capacity of an ideal AWGN channel with infinite bandwidth is ' η b/s, where S is the average signal power and $\eta/2$ is the power of the white Gaussian noise.	[5]	02	02
Q.2(b)	Draw the bandwidth efficiency diagram. Find the overall channel capacity of two cascaded connected BSC channels if both have the same transition probability diagram with $p=0.3$			02	03
Q.3(a) Q.3(b)	Define Singleton matrix H= [1 0 0	eld and its properties. Prepare multiplication table for the GF (5). and Humming bounds for linear block codes. Consider a parity check 0 0 1 1; 0 1 0 0 1 0 1; 0 0 1 0 1 1 0; 0 0 0 1 1 1 1	[5] [5]	03 03	01 04
Q.4(a)		tic coding in (7, 3) binary cyclic code (under GF (2)) with generator $=1 + x^2 + x^3 + x^4$. Generate all possible codewords.	[5]	04	06
Q.4(b)	What is the role of parity check matrix in error correction and for above question 4(a), determine parity check matrix, H .			04	03
Q.5(a)		nal encoder and its one stage of trellis diagram with transfer function $+ x^2 = 1 + x + x^2$]	[5]	05	04
Q.5(b)	· / -	decoding of convolutional codes with its advantages.	[5]	05	02

:::::28/04/2023 M:::::