BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI	
(MID SEMESTER EXAMINATION SP/2023)	

	(MID SEMESTER EXAMINATION SP/2023)					
CLASS: BRANCH	BTECH	SEMESTER : VI SESSION : SP/2023				
TIME:	SUBJECT: EC355 FIBER OPTIC COMMUNICATION 02 Hours F	FULL MARKS: 25				
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 5 marks and total 25 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates 						
Q.1(a) Q.1(b)	Define: (i) Axial ray (ii) Skew ray (iii) Leaky modes (iv) Cladding mode Draw a schematic representation of light path propagation in single-mode ste fiber, multi-mode step-index and multi-mode graded-index fiber with their dim of core and cladding regions.		[2] [3]	CO 1 1	BL 1 1	
Q.2(a)	The speed of light in the core of a SI fiber is $2 \times 10^8 m/s$. When the fiber is pl the air, the critical angle at the core-cladding interface is 75°. Calculate the numerity of the fiber	aced in merical	[2]	1	3	
Q.2(b)	aperture of the fiber Explain MCVD method for fiber Preform fabrication with diagram.		[3]	1	2	
Q.3(a)	Illustrate graphically how LP_{11} modes are derived from exact modes? Explain Birefringence.	in fiber	[2]	1	2	
Q.3(b)	A multimode step index fiber with a core diameter of 80 μ m and a relative difference of 1.5% is operating at a wavelength of 0.85 μ m. If the core refractive is 1.48, calculate: (a) the normalized frequency for the fiber; (b) the number of modes.	e index	[3]	1	3	
Q.4(a)	Why are direct band gap materials preferred over indirect band gap materials for source?	optical	[2]	2	2	
Q.4(b)	Derive an expression for material dispersion in a single mode fiber. Explain how be minimized.	v it can	[3]	1	2	
Q.5(a)	Explain absorption, spontaneous emission, stimulated emission, and pop inversion involved in laser action.	oulation	[2]	2	2	
Q.5(b)	Define internal quantum efficiency of an LED. Formulate an expression for the power generated internally to the LED.	optical	[3]	2	1,6	

:::::24/02/2023:::::M