
BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

_ _ _ _

CLASS: BRANCH:		SION : S		3	
TIME:	SUBJECT: EC353R1 DIGITAL COMMUNICATION 3 Hours FU	L MARK	S: 50		
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 					
	What do you mean by 'slope overload distortion in the Delta Modulation syste Assuming a sinusoidal message signal and no slope overload, derive an expression		CO 1	BL 3	
	the maximum value of the destination signal-to-quantization noise ratio. In a binary PCM system, the output signal-to-quantization noise ratio is to be held t) a [5]	1	2	

- Q.1(b) In a binary PCM system, the output signal-to-quantization noise ratio is to be held to a [5] 1 2 minimum value of 40 dB. Determine the number of required levels and find the corresponding output signal-to-quantizing noise ratio.
- Q.2(a) What is an 'integrate-and-dump' circuit? Show that it is the matched filter for the [5] 2 3 rectangular pulse of duration T sec.
- Q.2(b) The figure shows a finite energy signal $\Phi(t)$. (i) Sketch the impulse response $h_{opt}(t)$ of [5] 2 5 the optimum filter matched to $\Phi(t)$ and (ii) Determine the value of the output of the matched filter at t = T, assuming noise is zero and input is $\Phi(t)$.

- Q.3(a) With the help of a neat schematic block diagram, explain the working of a DPSK [5] 3 2 transmitter and receiver.
- Q.3(b) Find the symbol rate for BPSK, QPSK, 8-PSK, and 16-PSK digital modulation schemes if [5] 3 3 the bitrate is 256 Mbps.
- Q.4(a) Explain the terms: Entropy, Information rate, and Channel capacity. Show that the [5] 4 2 entropy is maximum when all the symbols of a discrete memoryless source are equiprobable.
- Q.4(b) A standard 4 kHz telephone channel has SNR = 25 dB at the receiver input. Calculate its [5] 4 3 information-carrying capacity. If bandwidth is doubled, how much does the capacity increase, assuming the transmitted signal power remains constant?
- Q.5(a) Explain with the help of a block diagram Direct Sequence Spread Spectrum (DSSS) [5] 5 2
- Q.5(b) What are the advantages and disadvantages of the Frequency Hopping Spread Spectrum [5] 5 2 technique?

:::::27/04/2023:::::M