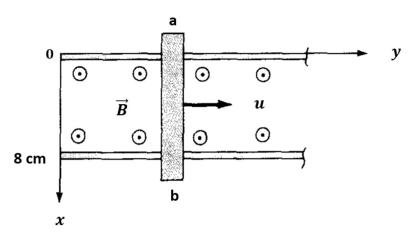
BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP2023)

CLASS: BTECH SEMESTER: IV BRANCH: ECE SESSION: SP2023

SUBJECT: EC257 ELECTROMAGNETIC FIELD AND WAVES

TIME: 02 Hours FULL MARKS: 25


INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 5 marks and total 25 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

Q.1(a)	Derive the differential and integral form of Faraday's Law of Electromagnetic Induction due to time varying flux.	[2]	CO CO2	BL 3
Q.1(b)	A parallel plate capacitor with plate area of 6cm^2 and plate separation of 4mm has a voltage $60 \sin 10^3 \text{t V}$ applied to its plates. Calculate the displacement current assuming $\epsilon = 2\epsilon_0$	[3]	CO2	3
Q.2(a)	Write the differential and integral form of Maxwell's equation assuming variations of fields Time harmonic assuming time factor $e^{j\omega t}$.	[2]	CO1	2
Q.2(b)	Derive the relation between normal component of electric field intensities on two sides of common boundary between two regions using Maxwell's equation assuming no surface charge densities exists between them.	[3]	CO2	3
Q.3(a)	Write down the expression for attenuation and phase constant of lossy dielectric medium and show that attenuation constant of a plane wave in good conductors approximately equals to phase constant.	[2]	CO3	2
Q.3(b)	A conducting bar slides freely over two conducting rails. Calculate the induced voltage in the bar if i) bar slides at a velocity $u = 25 \ a_y \ m/s$ and $B = 5 \ a_z \ mWb/m^2$ ii) If the bar slides at a velocity $u = 30 \ a_y \ m/s$ and $B = 4 \ cos$ ($10^6 \ t$ -y) $a_z \ mWb/m^2$ shown in Fig. 1.	[3]	CO4	4
Q.4(a) Q.4(b)	Define depth of penetration. Write down Wave equation for potential. Explain Poynting's theorem and prove it	[2] [3]	CO1 CO3	1
Q.5(a) Q.5(b)	Describe polarization of wave? When a wave is linearly polarized, circularly polarized? Derive the expression of reflection co-efficient for plane wave at normal incidence between two different media.	[2] [3]	CO3 CO4	1 4

:::::23/02/2023:::::M

