BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: B.TECH SEMESTER: IV
BRANCH: ECE SESSION: SP/2023

SUBJECT: EC253N ANALOG COMMUNICATION

TIME: 3 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q.1(a) Q.1(b)	Evaluate the Fourier transform of $Sinc^2\left(\frac{Wt}{2}\right)$, where $Sinc(t)=\frac{Sin(t)}{t}$. Evaluate the Hilbert transform of $Arect\left(\frac{t}{T}\right)$.	[5] [5]	CO I I	BL V V
Q.2(a)	A signal $v(t)=[1+m(t)]Cos\omega_c t$ is detected using a square law detector whose input output relationship is $v_0=v_{in}{}^2$. If the Fourier transform of the signal $m(t)$ is constant at the value M_0 from $-f_m$ to $+f_m$. Evaluate and sketch the Fourier transform of the	[5]	II	٧
Q.2(b)	output of the square law detector in the frequency range $-f_m < f < f_m$. Determine and plot in time domain and frequency domain, the upper side band and the lower side band SSB-SC modulated signal, $\varphi_{SSB}(t)$, when the modulating signal, m(t) is $Cos(\omega_m t)$.	[5]	Ш	٧
Q.3(a)	Find the expression of frequency modulated signal and its bandwidth when the	[5]	Ш	I
Q.3(b)	modulating signal, m(t) is $ACos(\omega_m t)$. Explain with the help of block diagram, the working principles of detection of FM by frequency discriminator.	[5]	Ш	II
Q.4(a)	Obtain the Nyquist rate and Nyquist interval for the signal $x(t) =$	[5]	IV	٧
Q.4(b)	$10\cos(4000\pi t)Sin(5000\pi t)$. Explain with the help of block diagram and waveforms, the working principles of generation and detection of pulse width modulation.	[5]	IV	II
Q.5(a)	Determine the noise equivalent bandwidth of RC low-pass filter with time constant of	[5]	٧	٧
Q.5(b)	1.5 Sec. Find the figure of merit of DSB-SC modulation for coherent reception.	[5]	٧	I

:::::26/04/2023:::::M