BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP2023)

CLASS: BRANCH:	BIOTECH/CIVIL/CHE/MECH/PROD SE SUBJECT: EC101 BASICS OF ELECTRONICS AND COMMUNICATION ENGINEERIN		SEMESTER: II SESSION: SP/2023 RING FULL MARKS: 25		
TIME:					
2. Attemp 3. The mi	TIONS: lestion paper contains 5 questions each of 5 marks and total 25 marks. ot all questions. issing data, if any, may be assumed suitably. /Data handbook/Graph paper etc., if applicable, will be supplied to the candidate				
Q.1(a)	Explain, how does a barrier field appear in an open circuited p-n junction diode Sketch the electric field intensity, electrostatic potential curves as a function o distance across the junction.		CO 1	BL 2	
Q.1(b)	A current flowing through a p-n junction Silicon diode is 60 mA for a forward bia voltage of 0.9 volt at room temperature 300 k. Determine the static and dynami resistances of the diode.		1	4	
Q.2(a)	Explain the working principle of a Zener diode-based voltage regulator with a nea circuit diagram. Can we replace the Zener diode with a p-n junction diode in the regulator circuit? Justify your answer.		1	2	
Q.2(b)	Find the range of input voltage to be applied to a Zener voltage regulator with a serie resistance of 200 Ω to maintain a voltage of 30V across the load resistance of 2 K Ω Assume the maximum power dissipated in the Zener diode is 750 mW.		1	4	
Q.3(a)	Clearly explain the working principle of a center-tap full-wave diode rectifier wit	h [3]	1	2	
Q.3(b)	circuit diagram. Also, draw different voltage and current waveforms associated. Derive expressions of rectification efficiency and voltage regulation for a center-ta full-wave diode rectifier.	p [2]	1	4	
Q.4(a)	Draw the circuit diagram for a transistor operating in common-emitter configuration Explain its output characteristics, indicating the active, cut-off and saturation region with characteristic diagram.		2	2	
Q.4(b)	Derive the current relationship $I_c = BI_B + I_{CEO}$, where I_c and I_B are representing th collector and base currents of a transistor, B is the current gain and I_{CEO} is the revers saturation current when base is open circuited.		2	4	
Q.5(a)	Draw the circuit diagram for a fixed-bias considering an n-p-n transistor in CE configuration mode of operation. Obtain expressions for its zero-signal operating poin values		2	2	
Q.5(b)	voltage and current values. Design a fixed-bias circuit for a CE-transistor amplifier such that operating point is V_c = $8V$ and I_c = $2 mA$. The circuit is supplied with a fixed 15 V dc-supply and a silico transistor with $B = 100$.		2	4	

:::::29/05/2023:::::M