BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	MTECH : CSE	EMESTER : II ESSION : SP/2023		
TIME:	SUBJECT: CS509 ADVANCED COMPUTER ALGORITHMS 3 Hours	FULL MARKS: 50		
INSTRUC 1. The q 2. Attem 3. The m 4. Before 5. Table	TIONS: uestion paper contains 5 questions each of 10 marks and total 50 marks. apt all questions. hissing data, if any, may be assumed suitably. e attempting the question paper, be sure that you have got the correct question pape s/Data hand book/Graph paper etc. to be supplied to the candidates in the examinati	er. on hal	I .	
Q.1(a)	Apply the Dynamic programming approach to find the solution for Matrix multiplication	[5]	CO CO1	BL BT3
Q.1(b)	Illustrate the backtracking technique by solving the graph colouring problem.	[5]	CO1	BT4
Q.2(a)	The Vertex cover problem is NP complete. Justify this by reduction from the 3-SAT	[5]	CO2	BT6
Q.2(b)	Write the NP completeness proof for the Independent set problem.	[5]	CO2	BT5
Q.3(a)	Formulate an MST based approximation algorithm to solve the Travelling salesman	[5]	CO3	BT5
Q.3(b)	Develop an approximation algorithm for the Vertex cover problem. Justify that the approximation ratio of the algorithm is 2.	[5]	CO3	BT5
Q.4(a) Q.4(b)	Write a note on Multiprocessor models for parallel algorithms. What is Amdahl's law? Elaborate on developing parallel algorithmic techniques based on Divide and Conquer.	[5] [5]	CO4 CO4	BT5 BT2
Q.5(a) Q.5(b)	Differentiate between Las Vegas and Monte Carlo Randomized algorithms. Explain the Kerger's algorithm for solving the Min cut problem. Illustrate with an example.	[5] [5]	CO5 CO5	BT4 BT5

:::::24/04/2023:::::E