BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI

(MID SEMESTER EXAMINATION SP2023)

CLASS:	BTECH
BRANCH:	CSE

SEMESTER: VI
SESSION : SP2023
SUBJECT: CS307 GRAPH THEORY
TIME: 02 Hours
FULL MARKS: $\mathbf{2 5}$

INSTRUCTIONS:

1. The question paper contains 5 questions each of 5 marks and total 25 marks.
2. Attempt all questions.
3. The missing data, if any, may be assumed suitably.
4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

		CO	BL
Q.1(a)	Prove that number of odd degree vertices in a simple graph is even.	[2]	CO1
Q.1(b)	Can we construct a graph with 30 vertices, 5 components and 24 edges. Answer yes/No	$[1]$	CO1

Q.2(a) Find graph $G^{C} \cap H$ from given graphs G and H. Where G^{c} stands for complement of G.
[2] CO1 3

Q.3(a) Find Eccentricity and centre of given graph.
[1] CO1 4

Q.3(b) Derive a formula to find height of k-ray tree.
[2] CO1 2
Q.3(c) Prove that a simple acyclic graph with n vertices and $\mathrm{n}-1$ edges is a tree.
[2] CO1 2
Q.4(a) Proof that a graph with 9 vertices with sum of degree of all vertices $=18$ is not a tree.
[2] CO1 3
Q.4(b) Find minimum spanning tree in given graph using prims algorithm.
[3] CO1 3

Q.5(a) Show the given inequality is true for given graph.

$$
K(G) \leq \lambda(G) \leq \delta(G)
$$

Where $K(G)$ is vertex connectivity, $\lambda(G)$ is edge connectivity and $\delta(G)$ is smallest vertex degree in G.
Q.5(b) Find the cut-sets matrix of given graph.
[2] CO2 3

Q.5(c) Find max flow in given graph
[2] CO2 3

