TIME: $\quad 3$ Hours
FULL MARKS: 50

INSTRUCTIONS:

1. The question paper contains 5 questions each of 10 marks and total 50 marks.
2. Attempt all questions.
3. The missing data, if any, may be assumed suitably.
4. Before attempting the question paper, be sure that you have got the correct question paper.
5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.
Q.1(a) What is the difference between linear and non-linear data structures? Elaborate various asymptotic notations used to evaluate the efficiency of the algorithm?
Q.1(b) Apply array to represent two polynomials and write an algorithm to add the polynomials using array?
Q.2(a) How does linked stack differ from a linear stack? Convert the given infix expression into its equivalent postfix expression (use algorithm to convert infix notation to postfix):
$A-(B / C+(D \% E * F) / G) * H$
Q.2(b) Explain the concept of a circular queue? How is it better than a linear queue?
Q.3(a) What is the difference between linked list and linear array? Explain why is a doubly linked list more useful than a singly linked list?
Q.3(b) Give the advantages and uses of a circular linked list? Write an algorithm to delete the last node from a singly linked list?
Q.4(a) How does the height of a binary search tree effect its performance? Construct a heap (H) from the given set of numbers: $45,36,54,27,63,72,61$, and 18. Also, while constructing, draw the memory representation of the heap?
Q.4(b) Consider a graph shown in Figure-1, Use a Depth First Search (DFS) and Breath First Search (BFS) traversals to construct a DFS spanning tree and a BFS spanning tree for the provided graph.
|Figure-1
Q.5(a) Why is quick sort algorithm better for arrays? Determine the time complexities of quicksort in best and worst case?
[5] CO3
Q.5(b) Describe the working of binary search algorithm with an example. Also discuss its time complexity.

	CO	BL
[5]	C01, CO3	BL4
[5]	CO 2	BL3
[5]	CO1, CO2	BL1
[5]	$\mathrm{CO1} \mathrm{CO3}$	BL4
[5]	CO 2	BL2
	CO3	
[5]	CO3	BL4
[5]	$\mathrm{CO2} \mathrm{CO} 4$	BL5
[5]	CO 4	BL4

BL BL4

BL3

BL1 BL3

