BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP2023)

CLASS: BRANCH:	BTECH CSE/IT			SEMESTER : IV SESSION : SP2023		
TIME: 02 Hours		SUBJECT: CS241 DESIGN AND ANALYSIS OF ALGORITHM		FULL MARKS: 25		
INSTRUC 1. The q 2. Attem 3. The m 4. Tables	TIONS: uestion paper contains pt all questions. issing data, if any, may s/Data handbook/Graph	5 questions each of 5 marks and total 25 marks. / be assumed suitably. paper etc., if applicable, will be supplied to the candida	tes			
Q.1	What is the significanc algorithm? Illustrate O, examples.	α of Asymptotic Notations in Design and Analysis of an Ω, Θ notations in term of Time Complexity with suitable	[5]	CO CO1, CO2	BL BL3	

- Q.2 Derive the Best Case and Worst-Case Time Complexity of Insertion Sort and prove [5] CO1, CO2 BL4, that Insertion Sort is stable. BL5
- Q.3 State and explain the Master Theorem. Solve the following recurrence relations [5] CO1, CO2 BL2, using Master Theorem. BL3 $T(n) = 2 T (n / 2) + n / \log n$

n) = 2 T (n / 2) + n / log n
T (n) = 2 T (n / 2) + n logn⁻²

$$T(n) = T\left(\frac{n}{4}\right) + nlogn$$

$$T(n) = T\left(\frac{n}{2}\right) + 1$$

$$T(n) = 2T\left(\frac{n}{2}\right) + nlogn$$

Q.4 Write the Quick Sort algorithm and derive its Time Complexity for Best Case and [5] CO1, BL4 Worst-Case. CO2, CO3

Q.5(a)	Explain the Binary Search algorithm and derive its Time Complexity using	[2]	CO1,	BL3
	mathematical induction method.		CO2, CO3	
Q.5(b)	Solve the following using Recursion Tree method:	[3]	CO1,	BL4
	T(n) = 2 T(n / 2) + n		CO2, CO3	
	$T(n) = 3 T(n / 4) + cn^2$			

:::::22/02/2023:::::M