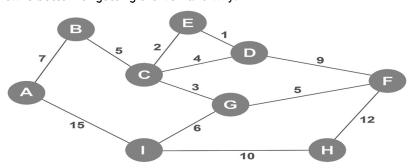
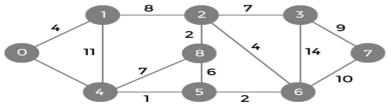

BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION SP2023)

| CLASS:<br>BRANCH:                                                                                                                                                                                                                                                                     | BTECH<br>CSE/IT  |                                                                                                                                                              | SEMESTER: SP/2023<br>SESSION: MORNING |            |                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------|-----------------|
| TIME:                                                                                                                                                                                                                                                                                 | 03 Hours         | SUBJECT: CS241 DESIGN AND ANALYSIS OF ALGORITHM                                                                                                              | FULL MARKS: 50                        |            |                 |
| INSTRUCTIONS:<br>1. The question paper contains 5 questions each of 10 marks and total 50 marks.<br>2. Attempt all questions.<br>3. The missing data, if any, may be assumed suitably.<br>4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates |                  |                                                                                                                                                              |                                       |            |                 |
| Q.1(a)                                                                                                                                                                                                                                                                                | Solve the follow | wing using Recursion Tree method:<br>$T(n) = 4 T(n / 2) + n^4$<br>T(n) = 4 T(n / 2) + n                                                                      |                                       | [5]        | CO<br>CO1       |
| Q.1(b)                                                                                                                                                                                                                                                                                | Solve the follow | wing recurrence relations using Master Theorem.<br>$T(n) = 3 T(n / 2) + n^2$<br>$T(n) = T(n / 2) + 2^n$<br>T(n) = 16T(n / 4) + n<br>T(n) = 2T(n / 2) + nlogn |                                       | [5]        | CO1             |
| Q.2(a)<br>Q.2(b)                                                                                                                                                                                                                                                                      |                  | thm to compute the complexity of Matrix Multiplication in C<br>ncept of Transform and Conquer strategy taking the examp                                      |                                       | [5]<br>[5] | CO2, CO3<br>CO3 |
| Q.3(a)                                                                                                                                                                                                                                                                                | Using Dynamic    | Programming approach find the Longest Common Sul                                                                                                             | bsequence                             | [5]        | CO2, CO4        |


Q.3(a) Using Dynamic Programming approach find the Longest Common Subsequence [5] CO2, CO4 between the following two strings:

## X = abaaba Y = babbab


Q.3(b) Find the solution to the following Travelling Salesman Problem using Dynamic [5] CO2, CO4 Programming approach. Consider vertex 'a' as the source vertex.



Q.4(a) Find the Minimum Spanning Tree of the following graph using both Prim's and Kruskal's [5] CO2, CO4 Algorithm. Consider vertex 'a' as the source vertex. Which among the two in your view is better for getting the MST and why?



Q.4(b) Find the shortest path from source 'a' of the following graph using Dijkstra Algorithm. [5] CO2, CO4 What are the drawbacks of this algorithm?



- Q.5(a) Define the classes 'P' 'NP', 'NP Hard' and 'NP Complete'. What do you mean by a [5] CO5 Decision Problem and an Optimization Problem?
- Q.5(b) Prove that the Max Clique Problem is NP Hard. [5] CO5

:::::26/04/2023:::::M