BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: **BTECH SEMESTER: IV BRANCH:** CSE/IT SESSION: SP/2023

SUBJECT: CS239 OPERATING SYSTEM

TIME: **FULL MARKS: 50** 3 Hours

INSTRUCTIONS:

- 1. The guestion paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

- Q.1(a) Explain the need for a dispatcher
- Q.1(b) Explain a batch processing and a time sharing system [3]
- Q.1(c) Describe the state diagram of a process [5]
- Q.2(a) Explain multilevel feedback queue scheduling. [2]
- Describe starvation and aging. Q.2(b)
- Compute the average turnaround time in Preemptive SJF, Preemptive Priority (Low Number -> Q.2(c) High Priority), and Round robin (T.Q - 2) scheduling. If there is a collision choose FCFS.

+-----+ | Process | Burst Time | Arrival Time | Priority |

+ P_0	10	1 1	3	1
P_1	4	2	1	1
P_2	2	3	3	1
P_3	1	4	4	
P_4	5	5	2	1
P_5	3	6	4	
P_6	1	7	1	

Q.3(a) Explain the rules to satisfy any solution to the critical section problem

[2] What does this RA graph signify? Q.3(b)[3]

[3]

[5]

P1 2 1 2 3 2 2	Q.3(C)								i	
P0	(3)	Ĺ <u>'</u>	Alloc		Max					
P1			X	Υ	∥ Z			<u></u> z		
P2 4 0 1 9 0 2 P3 0 2 0 7 5 3		P0	1	1	2	4	3	3		
P3 0 2 0 7 5 3		P1	2	1	2	3	<u> </u>	<u> </u>		
 		P2	4	0	1	9		<u> </u>		
P4 1 1 2 1 1 2		Р3	0	2	0	7	5	3		
		P4	1	1	2	1	1	2		

[5]

Available X -> 2, Y -> 1, Z-> 0 Compute the safe sequence.

Q.4(a) Q.4(b)	Is the worst fit algorithm ever helpful in contiguous memory allocation? Explain thrashing and how it can be avoided	[2] [3]
Q.4(C)	For 3 available frames, the following is the reference string: 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1 How many page faults will the LRU and Optimal page replacement algorithms produce?	[5]
Q.5(a) Q.5(b)	Explain spooling. Provide a comparative study of contiguous, linked, and indexes implementation of files.	[2] [3]
Q5(C)	A disk drive has 5000 cylinders, numbered 0-4999 The head is now cylinder 143. Pending queue is - 86, 1470, 913, 1774, 948, 1509, 1022, 1750, 130. What will be the total distance that the disk arm will move in SSTF, C-Look, C-SCAN? Draw it pictorially too.	[5]

:::::25/04/2023:::::M