BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	B. TECH S I: CP&P/MECH/PROD/ECE S	SEMESTER: VI SESSION: SP/2023		
TIME:	SUBJECT: CS206 DESIGN AND ANALYSIS OF ALGORITHM 3 Hours F	FULL MARKS: 50		
INSTRUC 1. The c 2. Atten 3. The r 4. Befor 5. Table	CTIONS: question paper contains 5 questions each of 10 marks and total 50 marks. npt all questions. nissing data, if any, may be assumed suitably. re attempting the question paper, be sure that you have got the correct questio es/Data hand book/Graph paper etc. to be supplied to the candidates in the exam-	n paper. mination	hall.	
0 1(a)	State Master's theorem? Solve the given recurrence relation using iterative metho	d. [5]	C0	BL BL 3
Q.1(b)	T(n) = {1 if n=1, $T(n/2) + n$ if n > 1} How do you measure the efficiency of an Algorithm? Determine the best and wo conditions for the insertion sort algorithm's complexity?	rst [5]	CO1 CO3	BL2
Q.2(a)	Write the outline of a sorting algorithm which consumes $O(N \log N)$ time for a list size N in the best, worst and average cases. Explain the claimed time complexity a	of [5] Ind	CO2	BL4
Q.2(b)	Explain Strassen's matrix multiplication and analyze its complexity?	[5]	CO4 CO5	BL3
Q.3(a)	Discuss the dynamic programming technique of tabulation and memoization. Give	an [5]	CO2	BL4
Q.3(b)	How would you use dynamic programming to explain the longest comm subsequence problem?	ion [5]	CO2 CO3	BL3
Q.4(a)	What strategy should be applied to the greedy method? Compute the optimal solution for the fractional knapsack problem using greedy method, number of Objects (N= Capacity (M=60 KG), Profits (P1, P2, P3, P4, P5) = (30, 40, 45, 77, 90) and Weight (W1, W2, W3, W4, W5) = (5, 10, 15, 22, 25).	ion [5] 5), hts	CO2 CO3	BL1 BL3
Q.4(b)	Discuss 4-queen problem using backtracking method and while solving, also draw portion of the corresponding state space tree or solution tree containing at least o solution?	va [5] me	CO2 CO3	BL5
Q.5(a)	Why are randomized algorithms necessary? Explain two types of algorithms used	in [5]	C04	BL3
Q.5(b)	Briefly discuss NP-hard and NP-Complete problems?	[5]	C04	BL3

:::::02/05/2023:::::M