BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP2023)

CLASS: BTECH BRANCH: CP&P/MECH/PROD/ECE		SEMESTER: VI SESSION: SP/2023		
TIME:	SUBJECT: CS206 DESIGN AND ANALYSIS OF ALGORITHM 02 Hours	FULL MARKS: 25		
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 5 marks and total 25 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates 				
Q.1(a) Q.1(b)	How do you measure the efficiency of an Algorithm? Determine the best and worst conditions for the insertion sort algorithm's complexity?	[2] [3]	CO CO-1 CO-5 CO-1 CO-3	BL BT-4 BT-3
Q.2(a) Q.2(b)	Define recurrence relation? Solve the recurrence relation using back substitution method $T(n) = \{1 \text{ if } n = 2 \\ T(\sqrt{n}) + 1 \text{ if } n > 2\}$	[2] [3]	CO-1 CO-1 CO-3	BT-3 BT-4
Q.3(a) Q.3(b)	Solve using master theorem: $T(n) = 4T(n/2) + n^2 \log^2 n$ Explain quicksort with an example?	[2] [3]	CO-1 CO-2	BT-2 BT-5
Q.4(a) Q.4(b)	What do you know about the divide-and-conquer algorithm? Briefly describe the maximum subarray problem using the divide-and-conquer method.	[2] [3]	CO-2 CO-2 CO-4	BT-2 BT-3
Q.5(a) Q.5(b)	What is the main idea of Transform and Conquer? Construct an AVL tree having the following elements: H, I, J, B, A, E, C, F, D, G, K, L	[2] [3]	CO-3 CO-2 CO-4	BT-3 BT-5

:::::28/02/2023:::::M