BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS:	Pre-PhD SEMI		STER : I	
BRANCH:	CHEMICAL ENGINEERING SESS		ON : SP/2023	
TIME:	SUBJECT: CL557 ADVANCED THERMODYNAMICS 3 Hours FUI	FULL MARKS: 50		
INSTRUC 1. The q 2. Attem 3. The m 4. Before 5. Tables	TIONS: uestion paper contains 5 questions each of 10 marks and total 50 marks. pt all questions. nissing data, if any, may be assumed suitably. e attempting the question paper, be sure that you have got the correct question paper. s/Data hand book/Graph paper etc. to be supplied to the candidates in the examination	hall.		
Q.1(a) Q.1(b) Q.1(c)	Distinguish between state function and path function. Draw and explain single component Pressure-Temperature diagram Explain about Carnot engine and estimate its efficiency.	[2] [3] [5]	CO 1 2 1	BL 1 2 4
Q.2(a)	Describe the concept of ensemble averaging? Explain subtle characteristics of microcanonical, canonical and grad canonical ensembles in a nutshell.	of [5]	2	3
Q.2(b)	Describe fundamental differences between Bose-Einstein, Boltzmann and Fermi-Dirastatistics.	NC [5]	3	2
Q.3(a)	Explain the concepts behind different phase-space plots and why they are so much important from practical aspects.	nt [5]	3	3
Q.3(b)	Summarize the fundamental postulates of kinetic theory of gases. Derive the expression of kinetic energy starting from the fundamental postulates of kinetic theory.	of [5]	4	2
Q.4(a)	Formulate the phase equilibria criteria for multicomponent present in multiphase system.	[5]	2	3
Q.4(b)	Derive Gibbs-Duhem's equation and summarize different forms of the equation.	[5]	2	3
Q.5(a) Q.5(b)	Illustrate the effect of pressure on equilibrium constant and equilibrium composition. A mixture of 1 mol CO, and 1 mol water vapour is undergoing the water-gas shift reaction at a temperature of 1100 K and a pressure of 1 bar. CO (g) + H ₂ O (g) = CO ₂ (g) + H ₂ (g) The equilibrium constant for the reaction is K = 1. Assume that the gas mixture behaves as ideal gas. Evaluate (a) The fractional dissociation of steam	[4] [6]	2 5	2 5

(b) The fractional dissociation of steam if the reactant stream is diluted with 2 mol nitrogen.

:::::24/04/2023:::::E