BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP2023)

CLASS: BRANCH:	B. TECH CHEMICAL/CHEMICAL P&P	SEMES SESSIO	TER N:	: VI SP20	023	
TIME:	SUBJECT: CL330 NATURAL GAS ENGINEERING 02 Hours	FULL A	A AR	KS: 2	5	
INSTRUCT 1. The qu 2. Attemp 3. The mi 4. Tables	IONS: estion paper contains 5 questions each of 5 marks and total 25 marks. ot all questions. ssing data, if any, may be assumed suitably. /Data handbook/Graph paper etc., if applicable, will be supplied to the candidate	es				
) 1(a) Wri	te the name of the methods for transporting natural gas from its origin to the exis	ting	[2]	C0 1	BL 1	

- 1 Q.1(a) Write the name of the methods for transporting natural gas from its origin to the existing [2] 1 markets. [3] 1 1
- Q.1(b) Define the following terms: (i) Reservoir, (ii) Field, and (iii) Pool
- Q.1(c) For the gas composition given below, determine apparent molecular weight, specific [5] 1 3 gravity, pseudocritical pressure, and pseudo-critical temperature of the gas.

Component	Mole fraction	T _{Ci} (°R)	P _{Ci} (psia)
CH₄	0.765	344	673
C_2H_6	0.073	550	709
C_3H_8	0.021	666	618
i-C₄H ₁₀	0.005	733	530
n-C₅H ₁₂	0.006	847	485
N ₂	0.060	492	227
CO ₂	0.040	548	1073
H₂S	0.030	1306	672

- Q.2(a) Define absolute and effective porosity of a rock material.
- Q.2(b) Define the following terms: (i) absolute permeability, (ii) Effective permeability, and (iii) [3] 2 1 Relative permeability.

[2] 2

1

Q.2(c) Prove the following relationship for the gas flow in a tube using first law of thermodynamics [5] 2 3 and with appropriate assumptions.

$$\frac{zRT}{29\gamma_g}\frac{dP}{P} + \left\{\frac{g}{g_c}\cos\theta + \frac{8fQ_{sc}^2P_{sc}^2}{\pi^2g_cD_i^5T_{sc}^2}\left[\frac{zT}{P}\right]^2\right\}dL = 0$$

Q.3 Draw a neat schematic diagram of various processes of a gas processing plant. Write at least [5] 3 1 three roles of a gas processing plant.

:::::23/02/2023:::::M