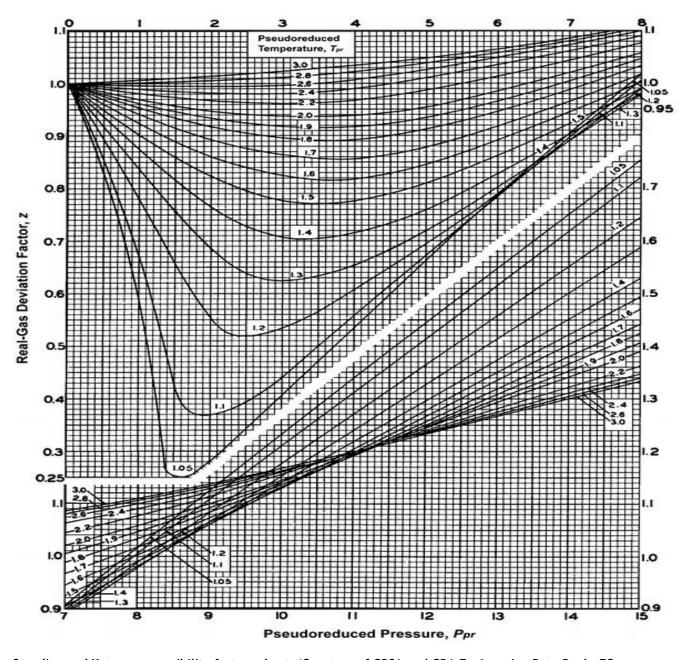
## BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP2023)

CLASS: B.TECH. SEMESTER: VI BRANCH: CHEMICAL/P&P SESSION: SP2023

**SUBJECT: CL326 RESERVOIR ENGINEERING** 


TIME: 02 Hours FULL MARKS: 25

## **INSTRUCTIONS:**

- 1. The question paper contains 5 questions each of 5 marks and total 25 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

| Q.1(a)<br>Q.1(b) | What are the differences between oil and gas reservoir? Discuss the differences between siltstone, claystone, mudstone, slate, and shale.                                                                                                                                                                                                                                                  |                |              |              |              |              |                     |        | [2]<br>[3] | CO<br>1<br>1 | BL<br>2<br>2 |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|--------------|--------------|--------------|---------------------|--------|------------|--------------|--------------|
| Q.2(a)<br>Q.2(b) | Discuss the factors affecting the secondary porosity in the reservoir A brine is used to measure the absolute permeability of a core plug. The rock sample is 5 cm long and 6 cm <sub>2</sub> in cross section. The brine has a viscosity of 1.1 cp and is flowing a constant rate of 0.5 cm <sub>3</sub> /sec under a 2.0 atm pressure differential. Calculate the absolute permeability. |                |              |              |              |              |                     |        | [2]<br>[3] | 1            | 2 3          |
| Q.3(a)<br>Q.3(b) | Derive the capillary pres Calculate the capillary following data: $\theta = 35^{\circ} \qquad \rho \\ r = 10^{-4} cm \qquad \sigma_{o}$                                                                                                                                                                                                                                                    | pressure, and  | d capilla    | ry rise i    | n an oil     | -water s     | ystem fro           | om the | [2]<br>[3] | 1            | 2 3          |
| Q.4(a)           | Show the cricondentherm, cricondenbar, quality lines and critical point for low shrinkage oil in phase diagram                                                                                                                                                                                                                                                                             |                |              |              |              |              |                     |        | [2]        | 1            | 1            |
| Q.4(b)           | Explain the retrograde condensation with a schematic diagram.                                                                                                                                                                                                                                                                                                                              |                |              |              |              |              |                     | [3]    | 1          | 2            |              |
| Q.5(a)           |                                                                                                                                                                                                                                                                                                                                                                                            | C2 C3 0.1 0.05 | i-C4<br>0.04 | n-C4<br>0.03 | i-C5<br>0.02 | n-C5<br>0.01 | N <sub>2</sub><br>0 |        | [5]        | 1            | 3            |

Reservoir conditions are 3,500 psia and 200°F. Calculate gas compressibility factor.



Standing and Katz compressibility factors chart. (Courtesy of GPSA and GPA Engineering Data Book, EO Edition, 1987)

:::::23/02/2023:::::M