BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

		(ENL	D SEWESLEK EN	(AMINA LION)				
CLASS: BRANCH	B.TECH. I: Chemical/Pl	astic & Polymer			SEMI SESS	ESTER : VI ION : SP/2	023	
					c			
TIME:	3 Hours	SUBJECT.	CLJZO KEJEK		FULI	_ MARKS: !	50	
INSTRU 1. The 2. Atter 3. The 4. Befor 5. Table 6. Varia	CTIONS: question paper of mpt all questions missing data, if a re attempting th es/Data hand boo ables have their	contains 5 questior s. any, may be assum e question paper, ok/Graph paper et usual meanings.	ns each of 10 r red suitably. be sure that y c. to be suppli	marks and total s you have got the ied to the candid	50 marks. correct question p lates in the examin	aper. ation hall.		
Q.1(a)	Calculate avera measurements:	age oil saturation	and connate	water saturatio	on from the follow	ving [6]	CO CO1	BL 3
	Sample	Thickness, ft	Φ, %	S ₀ , %	S _{wc} , %			
	1	1.0	10	75	25			
	2	1.5	12	80	20			
	3	1.4	15	76	24			
	4	2	13	74	26			
	5	1.8	16	77	23			
Q.1(b)	What are the A grain shape, g permeability of	llogenic minerals a rain size, grain p reservoir.	and Authigenic backing, grain	minerals? Expla sorting and gra	in briefly the effec in orientation on	t of [4] the	CO1	1,3
Q.2(a)	How do you di ordinary black o	fferentiate betwee oil, low shrinkage o	en dry and we il. volatile oil.	et gas? Explain t and near-critical	he phase behavior oil.	s of [5]	CO1	3
Q.2(b)	A crude oil syste bubble-point pr pressure are as $B_{ob} = 1.406$ bbl/ a. Oil density at b. Oil density at c. B_0 at 4500 ps	em exists at an init essure is estimated follows: STB, R _{sb} = 692 scf/2 the bubble-point p 4,500 psi i, using Standing co	ial reservoir pr l at 2109 psi. T STB, γ_g = 0.876 pressure prrelation:	essure of 4500 ps he oil properties o, API = 41.9°. Ca	i and 85°F. The at the bubble-point lculate:	[5]	C01	3
	$B_o = 0.9759 -$	$+ 0.000120 \left[R_s \left(\frac{1}{2} \right) \right]$	$\left(\frac{\gamma_g}{\gamma_o}\right)^{0.5} + 1.25($	(T-460)] ^{1,2}				
Q.3(a) Q.3(b)	Derive the conti The following p _e = 2500 psi, p 25×10 ⁻⁶ psi ⁻¹ , k = Assuming a slig with that of inc	nuity equation for data are av w _f =1850 psi, r _e = 7 = 0.12 Darcy, h = 20 htly compressible ompressible fluid.	unsteady state vailable on 50 ft, r _w = 0.2!) ft. fluid, calculat	radial flow from a well in 5 ft, B _o = 1.25 bb e the oil flow ra	pay zone to single v the Gulf 1 Fi l/STB, μ _o = 2.5 cp, te. Compare the re	rell. [5] eld: [5] c _o =	CO2 CO2	3 3
Q.4(a) Q.4(b)	Briefly explain An unknown fie estimated at 250	various drive mecha eld is a combinati 00 psi. The reservoi	anisms of prima on-drive reser	ary recovery. voir. The curren ata and PVT infor	t reservoir pressur nation are given bel	[5] e is [5] low:	CO3 CO4	2 3

Varibles	Initial reservoir condition	Current reservoir condition
P, psi	4000	3000
B_o , bbl/STB	1.35	1.33
R _s , scf/STB	600	500
N_p , MMSTB	0	6
G _p , MMMscf		5.5
B _w , bbl/STB	1.0	1.0
W _e , MMbbl	0	4
W_p , MMbbl	0	0.25
B_g , bbl/scf	0.0011	0.0015
Cf. Cw	0	0

Volume of bulk oil zone = 100,000 ac-ft Volume of bulk gas zone = 20,000 ac-ft The material balance equation is given as:

$$N = \frac{N_{p}[B_{o} + (R_{p} - R_{s})B_{g}] - (W_{e} - W_{p}B_{w}) - G_{inj}B_{ginj} - W_{inj}B_{wi}}{(B_{o} - B_{oi}) + (R_{si} - R_{s})B_{g} + mB_{oi}\left[\frac{B_{g}}{B_{gi}} - 1\right] + B_{oi}(1 + m)\left[\frac{S_{wi}c_{w} + c_{f}}{1 - S_{wi}}\right]\Delta p}$$

Q.5(a)How does the water flooding help in oil recovery? Briefly discus areal sweep efficiency and
vertical efficiency.[3+
2]C05
2,3
2]Calculate the water influx rate e_w in a reservoir whose pressure is stabilized at 3000 psi.
Given: initial reservoir pressure = 3600 psi, $dN_p/dt = 30,000$ STB/day, $B_o = 1.4$ bbl/STB,

GOR = 800 scf/STB, $R_s = 750$ scf/STB, $B_g = 0.00082$ bbl/scf, $dW_p/dt = 0$, $B_w = 1.0$ bbl/STB.

Q.5(b) Explain various enhanced oil recovery processes including *in situ* combustion and steam [5] CO5 2 injection

:::::27/04/2023 M:::::