BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP2023)

CLASS: B.TECH
 BRANCH: CHEMICAL ENGG

SUBJECT: CL223 CHEMICAL REACTION ENGINEERING - I
TIME: 02 Hours
FULL MARKS: 25

INSTRUCTIONS:

1. The question paper contains 5 questions each of 5 marks and total 25 marks.
2. Attempt all questions.
3. The missing data, if any, may be assumed suitably.
4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates
Q.1(a) Differentiate between elementary and non-elementary re
Q.1(b) Define the following terms:
(i) molecularity
(ii) order of reaction
(iii) heterogeneous non catalytic reactions with example
Q.2(a) Derive the following expression for a series reaction.
[3] CO1 3
$C_{\mathrm{R}}=C_{\mathrm{A} 0} k_{1}\left(\frac{e^{-k_{1} t}}{k_{2}-k_{1}}+\frac{e^{-k_{2} t}}{k_{1}-k_{2}}\right)$
Q.2(b) What are the factors on which rate constant depends?
Q. 3 Pure gaseous reactant $A\left(C_{A O}=100\right.$ millimole/liter) is fed at a steady rate into a mixed flow reactor ($\mathrm{V}=0.1$ liter) where it dimerizes $(2 A \rightarrow R)$. For different gas feed rates, the following data are obtained:

Run number	1	2	3	4
vo, liter/hr	30.0	9.0	3.6	1.5
CAf,	85.7	66.7	50	33.4
millimole/liter				

Find a rate equation for this reaction.
Q.4(a) Derive the expression of Half-life for a n -th order irreversible reaction
[2] CO 32
Q.4(b) For the reaction $A \rightarrow R$, second-order kinetics and $C_{A 0}=1 \mathrm{~mol} /$ litre , 50% conversion achieved after 1 hour in a batch reactor. What will be the conversion and concentration of A after 1 hour if $C_{A 0}=10 \mathrm{~mol} /$ litre .
Q.5(a) Reactant A decomposes to products B and C in the presence of an enzyme in a wellstirred batch reactor. The kinetic rate expression is given by
$-r_{A}=\frac{0.01 C_{A}}{0.05+0.01 C_{A}}\left(\right.$ mol.$\left.L^{-1} \cdot \mathrm{~min}^{-1}\right)$
If the initial concentration of A is $0.02 \mathrm{~mol} /$ litre, find the time taken to achieve 50% conversion of A.
Q.5(b) Gaseous reactant A decomposes as follows:
[3] CO2 5
$A \rightarrow 3 R,-r_{A}=\left(0.6 \mathrm{~min}^{-1}\right) C_{A}$. Find the conversion of A in a $50 \%-50 \%$ inert feed (
$v_{o}=180$ litre $/ \mathrm{min}, C_{A 0}=300 \mathrm{mmol} /$ litre $)$, to a one m^{3} mixed flow reactor.

