BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

					(END .	DEMESTER	EAAMINA						
CLASS: BRANC		B.TECH. CHEMICA	L ENGG								EMESTE ESSION	R : IV : SP/202	23
TIME: INSTRU		3 Hours		SUBJE	CT: CL2	15 MASS T	RANSFER	OPERATIC	NS-I	F	ULL MA	RKS: 50	
1. The 2. Atte 3. The 4. Befo 5. Tabl	ques mpt miss ore a es/D	stion pape all questi bing data, ttempting bata hand	ions. if any, n g the que book/Gra	nay be as estion pap aph pape	sumed su ber, be su r etc. to	iitably. Ire that yo be supplie	ed to the	ot the cor candidate	rect que s in the e	stion paper examinatior	n hall.		
Q.1(a)	at 318 K and 1.01325×10 ⁵ Pa. The surface temperature of the sphere is 318 K and its vapor pressure at 318 K is 0.555 mm Hg. The D_{AB} of naphthalene in air at 318 K is $6.92 \times 10^{-6} \text{ m}^2/\text{s}$.								or	CO CO1	BL 3		
Q.1(b)	Calculate the rate of evaporation of naphthalene from surface. Two bulbs are connected by a straight tube, 0.001 m in diameter and 0.15 m in length. Initially the bulb at End 1 contains N ₂ and the bulb at End 2 contains H ₂ . Pressure and temperature are constant at 25°C and 1 atm. At a time after diffusion starts, the nitrogen content of the gas at End 1 of the tube is 80 mol% and at End 2 is 25 mol%. If the binary diffusion coefficient is 0.784 cm ² /s, determine: (a) The rates and directions of mass transfer in mol/s (b) The species velocities relative to stationary coordinates, in cm/s							re he nt	C01	3			
Q.2(a)	coe A sı solu resı	fficients? oherical b ubility &ar	all of ber np; diffu Sherwoo	nzoic acid sivity of b d number	(diamete enzoic ac is given	er=1.5 cm) id in wate	er are 0.03	rged in a p kmol/m 3	oool of st & 1	sfer ill water. Th .25×10 ⁻⁹ m ² initial rate	/s	CO2	3
Q.2(b)	In a the one mol five Ami m= ⁻	n experin value of o point in le% NH ₃ , re % of the monia-wa 1.64 when	nental sti overall m the colur espective total res ter soluti the tota	udy of the ass transf mn, the c ly. The te sistance t ions follo al pressure	e absorpt fer coeffi compositi mperatur o mass tr w Henry' e is 1 atr	cient, K _G won of the re was 300 ransfer wa rs law up n. Calcula	was found gas and li K and the s found to to 5 mole	to be 2.75 quid phase total press be in the % ammon ividual film	5×10 ⁻⁶ km es were 8 sure was e gas pha nia in the m coeffic	wall colum ol/m ² skPa. 3.0 and 0.1 1 atm. Eight se. At 300 e liquid, wi ients and th e.	At 15 Sy- K, th	CO2	4
Q.3(a)	a fl in c idea	ow rate of counter cu	50 kmol/ urrent dir und liquid	hr. It is e ection. E exit cond	xpected t stimate t centration	to remove the minim n if the act	82% of solu um solven	ute by intro t rate. Als	oducing a so estima	ion column fresh solve te the no. the minimur	nt of	CO3	5
	X	0	0.02	0.03	0.04	0.06	0.08	0.1	0.12	0.14			
	Y	0	0.017	0.025	0.033	0.046	0.058	0.068	0.076	0.083			
		1		1			1						

Q.3(b) A packed tower is to be designed to absorb sulphur dioxide from air by scrubbing with water. [4] CO3 3 The entering gas is 20% SO₂ by volume and the leaving gas is to contain 0.5% SO₂ by volume. The entering water is free from SO₂. The water flow rate is to be twice the minimum. The air flowrate is 31.8 kmol/m²hr in solute free basis. The temperature and pressure of the system are 30°C and 2 atm. absolute, respectively. The equilibrium relation is given by y = 21.8x, where x and y are in mole fraction. Compute the NTU on the basis of overall gas phase mass transfer.

0.22

0.094

0.24

0.099

0.25

0.112

Х

Υ

0.15

0.085

0.16

0.087

0.18

0.091

0.2

0.092

- Q.4(a) A reboiler is considered as a theoretical plate but a total condenser is not. Justify. Why reflux [3] CO4 4 stream is necessary for a continuous distillation column?
- Q.4(b) A liquid mixture of benzene toluene is being distilled in a fractionating column at 101.3 k Pa [7] CO4 5 pressure. The feed of 100 kmole/h is liquid, and it contains 45 mole% benzene (A) and 55 mole% toluene (B) and enters at 327.6 K. A distillate containing 95 mole% benzene and 5 mole% toluene and a bottoms containing 10 mole% benzene and 90 mole% toluene are to be obtained. The amount of liquid is fed back to the column at the top is 4 times the distillate product. The average heat capacity of the feed is 159 KJ/kg mole. K and the average latent heat 32099 kJ/kg moles. Calculate

i. The kg moles per hour distillate, kg mole per hour bottoms

- ii. No. of theoretical stages at the operating reflux.
- iii. The minimum no. of theoretical stages required at total reflux.

iv. If the actual no. of stage is 10, what is the overall efficiency increased at operating condition compared to the condition of total reflux?

The equilibrium data:

Temp.(K)	353.3	358.2	363.2	366.7	373.2	378.2	383.8
x _A (mole fraction)	1.000	0.780	0.580	0.450	0.258	0.13	0
y_A (mole fraction)	1.000	0.900	0.777	0.657	0.456	0.261	0

Q.5(a) Write down the steps to find dew point of a multicomponent distillation process.

Q.5(b)

5

[3]

[7]

1 5

b)	A feed 100 kmoles/h of saturated liquid containing 10 mole % LNK, 55 mole % LK, and 35 mole
	% HK and is to be separated in a distillation column. The reflux ratio is 1.2 the minimum. It
	is desired to have 99.5 $\%$ recovery of the light key in the distillate. The mole fraction of the
	light key in the distillate should be 0.75. Equilibrium data: α_{NK} = 4.0, α_{LK} = 1.0, α_{HK} = 0.75.

Find

(i) Minimum number of stages required by Fenske method

(ii) Minimum reflux ratio by Underwood method

(iii) Number of ideal stages at R = 1.2 R_{min} by Gilliland method

(iv) Also find the number of ideal stages at rectifying section and the stripping section at the operating reflux ratio and location of feed stage.

:::::25/04/2023:::::M