BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP2023)

CLASS: BRANCH	B.TECH. S CHEMICAL ENGINEERING	SEMESTER : IV SESSION : SP2023			
	SUBJECT: CL215 MASS TRANSFER OPERATION				
TIME:	02 Hours	FULL M	ARKS	: 25	
INSTRUC 1. The c 2. Atten 3. The n 4. Table	CTIONS: question paper contains 5 questions each of 5 marks and total 25 marks. npt all questions. nissing data, if any, may be assumed suitably. es/Data handbook/Graph paper etc., if applicable, will be supplied to the candidate	es	_		
				60	ы
Q.1(a) Q.1(b)	Under what condition the approximation form of Fick's law is valid? In sulphuric acid plant, the air used for burning Sulphur must be dry. Drying of air is by countercurrent contact with concentrated sulphuric acid in a packed tower. particular section of the tower, the relative humidity of air is 30 % and the temperat 35 °C. If moisture in the air diffuses to the surface of the acid through a stagnant fit thickness 1.2 mm, calculate the flux of moisture at the given section. The partial pre- of moisture at acid surface is zero because the concentrated acid has an extremely affinity for moisture. The diffusivity value is 0.257 cm ² /s at 23 °C and the vapour pre- of water is 0.0552 bar at 35 °C.	done At a ure is ilm of essure y high essure	[1] [4]	1 2	23
Q.2(a)	What is the relation between the mass transfer coefficient and diffusivity for su	ırface	[1]	2	2
Q.2(b)	Calculate the molar flux of butanol at 20°C under unidirectional steady state cond through a 0.1 cm thick film of water when the concentrations of butanol at the opp sides of the film are, respectively 10% and 4% butanol by weight. The diffusivity of bu in water solution is 5.9×10^{-6} cm ² /sec. The densities of 10% and 4% butanol solutions at may be taken as 0.971 and 0.992 g/cc respectively. Molecular weight of Butanol is 7- that of water 18.	itions posite Itanol 20°C 1, and	[4]	2	3
Q.3(a) Q.3(b)	Explain the significances of Sherwood number and Schmidt number. The gas phase mass transfer coefficient for the evaporation of a drop of ethanol in a st of air at 300K and 1.2 bar pressure is $k_G=2.6\times10^{-6}$ kmol/sm ² mmHg. Calculate the thic of the stagnant gas film. Vaour pressure of alcohol at 300 K is 0.087 bar and diffusiv alcohol in air is 0.102 cm ² /s.	tream kness rity of	[2] [3]	2 2	2 3
Q.4(a) Q.4(b)	What is the expression for the Colburn factor, j_D ? A plate, 0.5 m ² coated with a layer of benzoic acid is placed in a stream of water flot at a velocity of 0.25 m/s at a temperature of 25 °C. Calculate the average rate of dissol of the acid per unit area of the plate and the equivalent thickness of a stagnant liquid that would offer the same resistance to mass transfer. The following data are available: solubility of benzoic acid in water at 25 °C = 3.01 k diffusivity of benzoic acid in water = 10 ⁻⁹ m ² /s and the viscosity of water at 25 °C = 8. ⁴ kg/m.s. [Given: $S_h = 0.664 \text{ Re}^{1/2} \text{ Sc}^{1/3}$]	owing lution d film g/m ³ ; 9 x10 ⁻	[1] [4]	1 2	1 3
Q.5	A solute 'A' is being absorbed from a gas mixture A and B in a gas-liquid contact vess a certain point in the vessel the bulk concentration in gas is 0.38 mole fraction and the in liquid is 0.1 mole fraction. The operating pressure and temperature are 1 atm. An K, respectively. The solute diffuses through stagnant B and then through non-diffi- liquid. The gas phase film mass transfer coefficient, k_y is 1.465×10^{-3} kmol A/s.m ² .mo and liquid phase film mass transfer coefficient, k_x is 1.967×10^{-3} kmol A/s.m ² .mo Calculate the interfacial concentrations, overall mass transfer coefficient for gas pha	el. At hat of d 298 fusing lfrac. lfrac. se, K _v	[5]	2	3

and the mass flux. The equilibrium data is given as follows: x_A 00.050.10.150.20.250.30.35 y_A 00.0220.0520.0870.1310.1870.2650.385

:::::21/02/2023:::::M