BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	BTECH I: CHEMICAL	SEM	SEMESTER : IV SESSION : SP/2023			
		SUBJECT: CL205R1 MECHANICAL OPERATIONS				
TIME:	3 Hours FULI			_ MARKS: 50		
INSTRUC 1. The c 2. Atter 3. The r 4. Befor 5. Table	CTIONS: question paper con npt all questions. nissing data, if any re attempting the c es/Data hand book/	itains 5 questions each of 10 marks and total 50 marks. /, may be assumed suitably. question paper, be sure that you have got the correct question paper. /Graph paper etc. to be supplied to the candidates in the examination	hall.	_		
0.1(a)	Define sphericity.	Calculate the sphericity of a hemisphere of diameter D	[3]	CO 1	BL 1	
Q.1(b)	Highlighting the industry? Explain t	various types of equipment used for conveying solid in chemical the principle of belt conveyer.	[4]	2	2	
Q.1(c)	Define angle of re	pose.Name the different method of solid storage.	[3]	2	1	
Q.2(a)	Propose size reduction devices suitable for following materials: (i) sticky frozen feed (ii) feed to be reduced to fixed dimensions (iii) heat sensitive. Justify the selection		[2]	4	6	
Q.2(b)	(i) Estimate the Power required to convert feed particles of 51 mm dia to 3.2 mm dia particles. Let mass flow rate be 100 ton/hr and W_i is 12.74 (ii) In a grinding mill, time taken to diminish 20% of a feed material with initial mass fraction of '0.0251' is '106 s'. Estimate grinding-rate function			1	5	
Q.2(c)) Identify and explain with figures, the salient features of size reduction machines associated with the following terms: (i) V-opening (ii) machine with in-built screen			3	3	
Q.3(a)) Draw a characteristic graph of Differential Settling process. Analyze and detail the inferences from the graph and list solutions to avoid mixed fractions		[3]	5	4	
Q.3(b)) Determine the settling velocity of 60 μ m & 10 μ m particles in a fluid of density 1.2 kg/m ³ for two conditions: (i) free settling of particles (ii) settling velocity of fine particle if settling of one particle affects settling of another. Particle Density = 1280kg/m ³ and viscosity of fluid = 1.8 x 10 ⁻⁵ Ns/m ² .			1	5	
Q.3(c)	Explain the working principles of Disk & Nozzle-discharge centrifuges with figures, salient points and applications			5	2	
Q.4(a)	Data for the labor table at constant p filter press was (8.9×10 ⁴ Pa.s. Calcu (<u>Graph paper requ</u>	ratory filtration of CaCO ₃ slurry in water at 25°C reported in following pressure drop (Δ p) 300kN/m ² . The filter area of single plate and frame 0.05m ² . Slurry concentration was 25kg/m ³ . The viscosity at 25°C is alate the specific cake resistance and filter medium resistance. <u>uired</u>)	[6]	5	5	
	Time, s Filter \	Volume ×10 ³ m ³				
	5 0.48					
	10 1.1					
	20 2.01					
	40 2.52					
	60 3.1					
	80 3.45					
	100 4.1					
	120 5.02		-			
Q.4(b)	b) Illustrating the compressibility coefficient of cake? How do you calculate it?			4	4	
Q.5(a)	Write a short note	on forth flotation techniques.	[2]	3	4	
Q.5(b)	A wastewater trea plant has dimensio	Itment plant has a flow rate of 0.5 m ³ /sec. The settling tank at the ons of 20 m long, 3 m tall and 6 m wide. If the settling velocity is	[3]	5	5	

- 0.0035 m/sec, how much percent of the particles will be removed?
- Q.5(c) Briefly **summarize** working principles of (i) Spiral Concentrators (ii) Tabling and (iii) [5] 5 2 Jigging. Also, outline the expression for overall efficiency of screen and explain the main difference of Hydroseparators compared to other separation processes.