BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP2023)

CLASS:	BTECH
BRANCH:	CHEMICAL

SEMESTER:IV
SESSION : SP2023
SUBJECT: CL205 R1 MECHANICAL OPERATIONS
TIME: 02 Hours
FULL MARKS: $\mathbf{2 5}$

INSTRUCTIONS:

1. The question paper contains 5 questions each of 5 marks and total 25 marks.
2. Attempt all questions.
3. The missing data, if any, may be assumed suitably.
4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates
Q.1(a) Differentiate between Cumulative and differential analysis
Q.1(b) Define sphericity. Calculate sphericity of a short cube assume L=D
Q.2(a) Explain the meaning and significance of the following in particle technology. a. Arithmetic mean diameter b. Mass mean diameter
Q.2(b) How do you determine Pressure at the base of a vertical bin filled with particulate solids by Janssen Equation
Q.3(a) Classify different conveying system and mention the criterion required for selecting it.
Q.3(b) Illustrate Gyratory crushers, smooth roll and toothed-roll crushers with neat figures and explain disadvantages of roll crushers in respect of leakage and abrasion. Also, mention the dominant forces in crushers and fluid energy mills.
Q.4(a) For a size reduction process, power required to reduce feed of 51 mm to product of 3.2 mm , is 167.5 kW . Let feed rate be 99 tons $/ \mathrm{hr}$. Solve for (i) wet grinding W_{i} and (ii) dry grinding W_{i}
Q.4(b) Outline disadvantages of (i) hammer mills \& (ii) rod mills with reference to rods. Write the expressions for forces inside ball mill and outline phenomena occurring in ball mills a) if rpm >> critical speed and b) rpm << critical speed
Q.5(a) Distinguish (i) $W \& W_{n}$ (ii) $\eta_{m} \& \eta_{c}$
Q.5(b) In a grinding mill, initial feed material of $4 / 6$ mesh is used. Grinding rate function is $0.001 \mathrm{~S}^{-1}$ and $\beta=1.5$. If mass fraction of starting material is 0.0251 , (i) estimate time required for the mass fraction to reduce by 20% (ii) If dia of initial feed is 3.327 mm and dia of particles in immediate next level is 2.362 mm , evaluate $B_{2,1}$ and $\Delta \mathrm{B}_{2,1}$

	CO	BL
$[2]$	1	1Remember
$[3]$	2	3Apply

[2] 1 2Understand
[3] 3 4Analyze
[2] 4 2Understand
[3] 2 2Understand
[2] 13 Applying
[3] 4 2Understand
[2] 44 Analyzing
[3] 35 Evaluating

