BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

	(END SEMESTER EXAMINATION)			
CLASS: BRANCH		SEMESTER		3
TIME:	SUBJECT: CH514 CHEMICAL APPLICATION OF GROUP THEORY 3 Hours	FULL MAR	KS• 50	
INSTRUC 1. The q	TIONS: uestion paper contains 5 questions each of 10 marks and total 50 marks.			
3. The m 4. Before 5. Tables	pt all questions. issing data, if any, may be assumed suitably. e attempting the question paper, be sure that you have got the correct question pap s/Data hand book/Graph paper etc. to be supplied to the candidates in the examinat	ion hall.		
Q.1(a)	Derive an expression for Projection Operator and discuss the utility of Projection	on [5]	CO 5	BL 2
Q.1(b)	Operators. (i) Use the 3N Cartesian basis and the appropriate Character table to determine the symmetries of vibrational modes of H_2O . (ii) Identify the Infra-red active vibration modes in trans- N_2F_2 molecule by taking help from appropriate character table.		5	3
Q.2(a)	Show that, the symmetry of $2p_z$ orbitals of naphthalene belongs B_{2g} , B_{3g} , A_u , and E representation.	3 _{1u} [5]	5	2
Q.2(b)	Using HMO approach form the secular determinant of π -orbitals of ethylene and calcula the energy of π -bonding and anti-bonding orbitals.	te [5]	5	2
Q.3(a) Q.3(b)	Determine the symmetry of hybrid orbitals of boron in BF ₃ . Show that the symmetry representation of \square -MOs in H ₂ O.	[5] [5]	5 5	3 2
Q.4(a)	Consider a transition metal atom embedded in O_h symmetry. Quantitatively explain the fate of degeneracy of p and d orbitals in such an environment by taking help from an one symmetry operation present within O_h point group.		5	3
Q.4(b)	Explain the concept of tetragonal elongation/compression by taking help from the Correlation Table for O_h point group.	ne [5]	5	3
Q.5(a)	(i) Explain the emergence of band gaps and band structures within solids by taking he from a 1 dimensional Kronig-Penney model. You may assume the concerned potential be a delta function. (ii) Consider a free particle wave function. Does this wave function obey Bloch's theorem?	to	5	3
Q.5(b)	Show that in 2-dimensional lattice 5 order rotation is not possible.	[5]	5	1 PTO

:::::24/04/2023:::::E

Character and Correlation Tables

0,	0	T _d	D _{4h}	D 24	C40	C20	D 34	D ₃	C _{2h}
A 10			A 19	A1	A,	A1 A2	A1.	AL	A _g B _g
A 2, E.	A ₂ E	E^{A_2}	$\frac{B_{1g}}{A_{1g}+B_{1g}}$	B_1 $A_1 + B_1$	B_1 $A_1 + B_1$	A_1 $A_1 + A_2$	A 20 E0	A ₂ E	$A_g + B_g$
T1.	T_1	Τı	$A_{2g} + E_g$	$A_2 + E$	$A_2 + E$	$A_2 + B_1 + B_2$	$A_{2g} + E_g$	$A_2 + E$	$A_{g} + 2B_{g}$
T ₂₀ A ₁₀	T_2 A_1		$B_{2g} + E_g$ A_{1y}	$\frac{B_2}{B_1} + E$	$B_2 + E$ A_2	$\begin{array}{c}A_1+B_1+B_2\\A_2\end{array}$	$A_{1g} + E_{g}$ A_{1u}	$A_1 + E$ A_1	$2A_g + B_g$ A_u
A24	Az	A	B ₁ ,	A ₁	B ₂	A	A 2 w	A 2	B _u
E. T1.		E	$\begin{array}{l}A_{1u}+B_{1u}\\A_{2u}+E_{u}\end{array}$	$A_1 + B_1$ $B_1 + E_1$	$A_2 + B_2$ $A_1 + F$	$\begin{array}{c}A_1 + A_2\\A_1 + B_1 + B_2\end{array}$	$E_{w} \rightarrow E_{v}$	E	$\begin{array}{c} A_u + B_u \\ A_u + 2B_u \end{array}$
	T_2			$A_2 + E$	$B_1 + E$	$A_1 + B_1 + B_2$ $A_2 + B_1 + B_2$			$2A_{\mu}+B_{\mu}$

F	St	ates in Point G	roups					
Free- Ion Terms	<i>O</i> _{<i>h</i>}	T _d	D _{4/1}	-				
'S	¹ A _{1g}	¹ A ₁	$^{1}A_{1g}$	C2r	E	с.	$\sigma_r(xz)$	$\sigma'(vz)$
'G	${}^{1}A_{1g} {}^{1}T_{2g}$ ${}^{1}E_{g}$ ${}^{1}T_{1g}$	$A_1 T_2$ $E T_1$	$\begin{array}{ccc} 2^{1}A_{1g} & {}^{1}B_{2g} \\ {}^{1}A_{2g} & 2^{1}E \\ {}^{1}B_{1g} \end{array}$				0,00	
3Р	${}^{3}T_{1g}$	³ T ₁	${}^{3}A_{2g}$ ${}^{3}E_{g}$	- A ₁	1	I	1	1
	15	'E	A_{1g} E_{g}	- A ₂	1	1	-1	1
'D	${}^{1}E_{g}$ ${}^{1}T_{2g}$	T_2	$B_{1g}^{1} B_{2g}^{1}$	B_1	1	-1	1	-1
ЪF	${}^{3}A_{2g}$ ${}^{3}T_{1g}$ ${}^{3}T_{2g}$	${}^{3}A_{2}$ ${}^{3}T_{1}$ ${}^{3}T_{2}$	${}^{3}A_{2g}$ $2{}^{3}E$ ${}^{3}B_{1g}$ ${}^{3}B_{2g}$	- B ₂	1	-1	1	1

		0 	2h	E 1 1 - 1	C ₂ 1 - 1 1 -	<i>i</i> 1 -1 -1	σ_h -1 -1 1	
D _{3h}	E 2C	3 3C ₂	_	2 <i>S</i> ₃	3 <i>σ</i> _v			
A_1' A_2'	1 1	$ \begin{array}{ccc} 1 & 1 \\ 1 & -1 \end{array} $	1 1	1 1	$^{1}_{-1}$	R	-	$x^2 + y^2, z^2$
$\begin{bmatrix} E'\\ A_1'' \end{bmatrix}$	${2 \\ 1}$ -	$\begin{array}{ccc} 1 & 0 \\ 1 & 1 \end{array}$	$^{2}_{-1}$	$^{-1}_{-1}$	0		с, y)	(x^2-y^2, xy)
$\begin{array}{c} A_{1}' \\ A_{2}' \\ E' \\ A_{1}'' \\ A_{2}'' \\ E'' \end{array}$	$\frac{1}{2}$ –		$^{-1}_{-2}$	$^{-1}_{1}$	1 0		(R_x, R_y)	(<i>xz</i> , <i>yz</i>)

04	E	8C1	6C2	6C₄	$3C_2(=C_1^2)$	i	6 <i>S</i> 4	8S6	300	6a _d		
Ale	1	1	1	1	1	1	1	1	1	1		$x^2 + y^2 + z^2$
A2e	ı	I	- 1	- 1	1	1	- 1	1	1	- 1		
E,	2	- 1	0	0	2	2	0	- 1	2	0		$(2z^2 - x^2 - y^2, x^2 - y^2)$
Tie	3	0	- 1	1	- 1	3	1	0	-1	-1	(R_1, R_1, R_2)	
T2e	3	0	1	- 1	-1	3	-1	0	- 1	I		(xz, yz, xy)
A 1.	1	1	1	1	1	- 1	-1	- 1	- 1	-1		
A 24	1	1	- 1	- 1	1	- 1	1	-1	-1	1		
Е,	2	- 1	0	0	2	- 2	0	1	-2	0		
T _{In}	3	0	- 1	1	-1	-3	-1	0	1	1	(x, y, z)	
Tzu	3	0	1	- 1	-1	- 3	1	0	1	- !		
- 20						-					1	I

D _{2h}	E	C ₂ (z)	C ₂ (y)	$C_2(x)$	i	σ (xy)	σ (xz)	σ (yz)	linear functions, rotations	quadratic functions	cubic functions
Ag	+1	+1	+1	+1	+1	+1	+1	+1	-	x^2, y^2, z^2	-
B _{1g}	+1	+1	-1	-1	+1	+1	-1	-1	Rz	xy	-
B _{2g}	+1	-1	+1	-1	+1	-1	+1	-1	Ry	XZ	-
B _{3g}	+1	-1	-1	+1	+1	-1	-1	+1	R _x	yz	-
A _u	+1	+1	+1	+1	-1	-1	-1	-1	-	-	xyz
B _{1u}	+1	+1	-1	-1	-1	-1	+1	+1	z	-	z^3, y^2z, x^2z
B _{2u}	+1	-1	+1	-1	-1	+1	-1	+1	у	-	yz^2, y^3, x^2y
B _{3u}	+1	-1	-1	+1	-1	+1	+1	-1	x	-	xz^2, xy^2, x^3