BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	MSC/IMSC/PRE-PHD : CHEMISTRY	SEMESTER : II/VIII/NA SESSION : SP/2023			
TIME:	SUBJECT: CH409 QUANTUM CHEMISTRY & GROUP THEORY 3 Hours	FULL MARKS: 50			
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 					
Q.1(a) Q.1(b)	Explain the variational theorem. Considering time-dependent perturbation theory, derive an expression transition probabilities between states. Using your results obtained herein, how time-dependent perturbation theory could be used to understand inter between light and matter and thereby emission and absorption spectroscopy.	explain eraction	[3] [3+4]	CO 5 5	BL 2 3
Q.2(a) Q.2(b)	Consider a particle moving in a 1 Dimensional box. This particle is subject uniform electric field of strength Ω as a result of which its potential energy in linearly with x. Find the lowest energy eigenvalue for this particle. Discuss the Born-Oppenheimer approximation. Derive an expression for the Schrodinger equation by starting from the total molecular Hamiltonian considering both nuclear and electronic parts of the total wave function for system.	creases Nuclear and by	[3] [2+5]	5 5	2 3
Q.3(a) Q.3(b)	Explain what is meant by a Fock operator. Write down the Slater determinate Li atom. Consider the following spin (part of the) wave function: $N[\alpha(1)\beta(2) - \alpha(2)\beta(1)]$. Show whether this state could be considered as pure spin state or not.		[2+2] [6]	5 5	2 3
Q.4(a) Q.4(b)	What is the point group of tetrachlropalladate $[PdCl_4]^{2-}$ and show the synchronic elements. For water molecule, Γ_1 = 3A1 + A2 + 3B1 + 2B2, find out the different may vibration which are IR active, Raman active & both IR and Raman active. Discuss the principle of reduction of reducible representation into irrepresentation taking water as an example.	odes of	[2+3] [5]	5 5	3 2
Q.5(a) Q.5(b)	Write down the postulates of Great Orthogonality Theorem? A group has the for irreducible representations: A1, A2, B1, B2, E1, E2. (i) What is the order of the (ii) How many classes are in the group? Construct the character table for NH_3 molecule with proper explanation.		[3+2] [5]	5 5	3 3

:::::25/04/2023:::::E