BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION MO/SP20**)

CLASS: IMSc SEMESTER: VI BRANCH: CHEMISTRY SESSION: SP/23

SUBJECT: CH313R1 INORGANIC CHEMISTRY-IV; ORGANOMETALLIC CHEMISTRY

TIME: 02 HOURS FULL MARKS: 25

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 5 marks and total 25 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

			CO	BL
Q.1(a)	Choose the organometallic complexes from the list: Dichloro, ethylene diammine Pt(II) carbonate, Ferrocene, Ethylene diammine tetra acetato Co(III) ion, bis-(cyclopentadienyl) Ti(III) chloride	[1]	1	1
Q.1(b)	Give example of the following: Ionic organometallic compounds; Organometallic complexes with bridging bonds.	[1]	1	1
Q.1(c)	Discuss the lability of the main group organometallic compounds. In this comtext explain the higher stability of tetraethyl lead over tetra methyl lead.	[3]	1	2
Q.2(a) Q.2(b)	Show the Schlenk equillibrium for grignard reagent. With proper diagram, explain the tetrameric cluster of methyl lithium. Also provide valid reason for such aggregation	[2] [3]	1 2	1 2
Q.3(a)	Consider the 18-electron rule as a guide and determine the unknown quantity in the following complexes. i) [Cp)W(CO) x] ₂ (has a W-W single bond) determine x. ii) MnBr(CO) n determine n. iii) [Cp)Mn(CO) x] 2 (has a Mn=Mn double bond) determine x.	[3]	2	2
Q.3(b)	Select the best choice in each of the following and briefly justify the reason for your choice. i) Complex with shortest C-O bond: Ni(CO) ₄ ; [Co(CO) ₄] ⁻ ii) Complex with largest M-C bond: [Fe(CO) ₄] ²⁻ ; [Co(CO) ₄] ⁻	[2]	3	2
Q.4(a)	Discuss metal-carbonyl bonding based on Molecular orbital theory and discuss	[3]	1	
Q.4(b)	synergistic effect. Explain the structure of $Mn_2(CO)_{10}$ and $Fe(CO)_5$ based on the Valance bond theory.	[2]	2	
Q.5(a)	What is stepwise stability constant and how is it different from overall formation constant .	[2]	1	
Q.5(b)	Define and Distinguish between thermodynamic stability and and kinetic stability, giving suitable examples	[3]	1	

:::::20/02/2023:::::M