BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP2023)

	CLASS: BRANCH:	IMSc	JEMESTER EXAMINATION SI 2023)	SEMESTER : IV SESSION : SP2023		
SUBJECT: CH217 PHYSI TIME: 02 Hours			ECT: CH217 PHYSICAL CHEMISTRY - IV	STRY - IV FULL MARKS: 25		
	 INSTRUCTIONS: 1. The question paper contains 5 questions each of 5 marks and total 25 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates 					
	Q.1(a) Q.1(b)	Degree of dissociation and limitations of Arrhenius Theory		[3] [2]		
	Q.2(a) Q.2(b)	conductance of CH3COOH and AgCl.		calculate the molar	[3] [2]	
	Q.3(a) Q.3(b)	T Vs C and λ Vs C.		on of an absorbing	[3] [2]	

substance. The Intensity of radiation is reduced to one-fourth of the initial value after passing through 10cm length. Calculate the molar extinction coefficient of the substance.

- Q.4(a)Discuss the Collision theory of reaction rate. What are the limitations of collision theory.[3]Q.4(b)Discuss the factors affecting the rate of a reaction.[2]
- Q.5(a) Derive an expression for the rate constant of first order reaction. Write the expression for half-life [3] period.
- Q.5(b) For a given First order reaction, K is 2.6 x 10-10 S -1 at 300 °C and 6.7 X 10-4 S -1 at 500°C. Calculate [2] the energy of activation.

:::::21/02/2023:::::M