BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: IMSC SEMESTER: II
BRANCH: CHEMISTRY SESSION: SP/2023

SUBJECT: CH114 PHYSICAL CHEMISTRY-II

TIME: 3 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q.1(a) Q.1(b)	For adiabatic reversible changes in an ideal gas, prove that PV^{γ} = constant An ideal gas expands reversibly and isothermally from 10 bar to 1 bar at 298 K. Find out the values of W, Q, ΔU and ΔH per mole of the gas. [R = 8.314 J K ⁻¹ mol ⁻¹]	[5] [5]	CO 1 1	BL 1 2
Q.2(a)	What is heat of formation of water?	[5]	2	1
Q.2(b)	Explain the Hess's law of constant heat summation. Given the following data $ 0.5H_2(g) + 0.5F_2(g) = HF(g) \qquad \Delta H^\circ = -273.3 \text{ kJ/mol} $ $ H_2(g) + 0.5O_2(g) = H_2O(l) \qquad \Delta H^\circ = -285.8 \text{ kJ/mol} $ Calculate the value of ΔH° for the following reaction $ 2F_2(g) + 2H_2O(l) = 4HF(g) + O_2(g) $	[5]	2	2
Q.3(a)	Discuss how thermodynamic (Kelvin) temperature scale could be defined by taking	[5]	2	1
Q.3(b)	help from an appropriate Carnot cycle. Discuss Clausius' inequality. Quantitatively explain the concept of residual entropy.	[2+3]	2	2
Q.4(a)	The reaction: $N_2O_3(g) = NO_2(g) + NO(g)$, was studied at 298K with initial amount of the reactant equal to 1 mol. At equilibrium, the extent of reaction was found to be 0.3 mol for a total pressure of 1 bar. Find out the values of K_p^0 and $\Delta_r G^0$ for this reaction.	[5]	2	2
Q.4(b)	The equilibrium constant for the reaction: $2SO_2(g)+O_2(g)=2SO_3(g)$ is 4×10^{24} at 300K, 2.5×10^{10} at 500K and 3×10^4 at 700K. Estimate the reaction enthalpy at 500K.	[5]	2	2
Q.5(a)	What is chemical potential? Explain the stability of different phases of a compound at different temperature.	[5]	5	2
Q.5(b)	Show that the free energy of mixing of two components has a minimum value when they are in equal amounts.	[5]	5	1

:::::18/07/2023:::::