BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP2023)

CLASS: IMSc SEMESTER: BRANCH: CHEMISTRY SESSION: SP2023

SUBJECT: CH114 PHYSICAL CHEMISTRY II

TIME: 02 Hours FULL MARKS: 25

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 5 marks and total 25 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

Q.1(a)	Are the following statements, correct? Justify. a. Heat absorbed in an isothermal expansion is zero. b. Reversible work is always larger than the irreversible work.	[2]	CO 1	BL 1
Q.1(b)	Determine the total work done in a cyclic process where one mole of an ideal gas first expanded from V_1 (pressure P1) to V_2 (pressure P2) reversibly and then compressed back from V_2 to V_1 in a single step at isothermal condition (temperature maintained at T_1).	[3]	1	2
Q.2(a)	Show that there is no change in internal energy during volume changes for an ideal	[2]	2	1
Q.2(b)	gas. Calculate D <i>U</i> and D <i>H</i> for the process: 2.0 mole ideal gas (monoatomic) at (1.5 atm, 400 K) (monoatomic) at (3 atm, 600 K) $[C_V = 1.5 \text{ R}]$	[3]	2	2
Q.3(a)	Using 1st law of thermodynamics, determine the internal energy changes during the following processes a. constant volume heating to increase the temperature from T ₁ to T ₂ of an ideal gas having heat capacity C _V . b. Adiabatic single step expansion from V ₁ to V ₂ at final pressure P ₂	[2]	2	2
Q.3(b)	Show that $C_P - C_v = nR$ where the symbols have their usual significance.	[3]	2	2
Q.4(a) Q.4(b)	Define Chemical Potential and discuss its physical significance, Discuss the Le Chatelier principle from quantitative thermodynamic arguments.	[2] [3]	2 2	1
Q.5(a)	Derive and show the relationship between K_p and $K_{c,}$ where the symbols have their usual significance	[2]	1	2
Q.5(b)	Quantitative discuss about the temperature dependence of K_p by taking help from appropriate thermodynamic formalism.	[3]	1	1

:::::25/05/2023:::::M