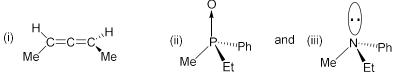
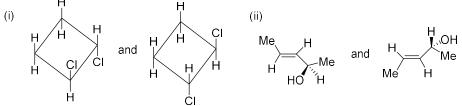

BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION SP2023)

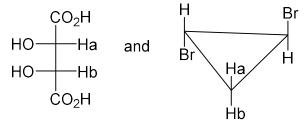
CLASS: BRANCH:	IMSC. CHEMISTRY	SUBJECT: CH108R1 ORGANIC CHEMISTRY-I	SEMESTER: II SESSION: SP/2023				
TIME:	03 HOURS		FULL MARKS: 50				
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 5 marks and total 25 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates 							


			CO	BL
Q.1(a)	Explain the types of permanent polarization possible in halogen substituted benzene	[2+3]	2	2
	(C_6H_5X) . Arrange the increasing order of withdrawing effect of Fluorine, Chlorine,			
	Bromine and lodine substituted benzene with respect to benzene.			
Q.1(b)	The first deprotonation of maleic acid is easier than that of fumaric acid but for	[3+2]	3	3
	second one the trend is just opposite- Explain. Why is the 2,4,6-trinitro-N,N-			

- Q.2(a) Explain the kinetic and thermodynamic control with the HBr addition to 1,3- [5] 1 3 Butadiene.
- Q.2(b) Discuss reactive intermediates "carbene & nitrene" for the formation, orbital [5] 2 4 structure, and relative stability with an example reaction.
- Q.3(a) (i) Assign R-/S-descriptors for the chiral centers present in the following compounds: [2+3] 1 3


(ii) Explain whether the following compounds are resolvable or not:

dimethyle aniline 40000 times stronger base that 2,4,6-trinitroaniline?


Q.3(b) What is gauche-butane interaction? Draw the conformers of 2-methyl butane for [1+4] 2 4 rotation about C2-C3 bond in Newman projection formula and compare their relative stabilities through energy profile diagram.

Q.4(a) (i) Label the following pairs of molecules as homomers, enantiomers or diasteromers: [2+2] 1 3

(ii) Give the principle of a method of resolution of racemic 2-butanol

Q.4(b) (i) Identify H_a and H_b In each of the following structures as homotopic, enantiotopic [2+4] 2 4 or diastereotopic and explain

(ii) Draw Fisher projection formulas of all the possible stereoisomers of $CH_3CH(OH)CH(OH)CH(OH)CO_2H$ and identify the enantiomers, homomers and diastereomers.

Q.5(a) (i) Cis-4-hydroxycyclohexane carboxylic acid readily forms a lactone, but the trans - [2+2] 2 2 isomer fails to do so- Explain.
 (ii) trans-4-t-butyl cyclohexane carboxylic acid stronger acid than its cis-isomer-

Explain.
Q.5(b) (i) The a,a-conformer of trans-1,2-dibromocyclohexane is more stable in gaseous [2+4] 3 3 state, the (a,a : e,e = 95:5) while the ratio is (52:48) in benzene solution. Explain (ii) Draw all possible chair conformations of *cis* and *trans* 1, 4 dimethyl cyclohexane. Which one will be the preferred conformation. Explain.

:::::17/07/2023:::::