CLASS: M.Tech.
BRANCH: Civil
SEMESTER : II
SESSION : SP/2023
SUBJECT: CE506 FINITE ELEMENT METHOD
TIME: $\quad 3$ Hours

INSTRUCTIONS:

1. The question paper contains 5 questions each of 10 marks and total 50 marks.
2. Attempt all questions.
3. The missing data, if any, may be assumed suitably.
4. Before attempting the question paper, be sure that you have got the correct question paper.
5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.
Q.2(a) Derive the method of weighted residual statements (both strong form and weak form) for axially loaded bar show in the given figure.

Q.2(b) Calculate the equivalent nodal load vector for the beam given in Figure 3. [5] 14 Interpolation functions for two-nodded beam element is given by
$N_{1}=1-\frac{3 x^{2}}{L^{2}}+\frac{2 x^{3}}{L^{3}}, \quad N_{2}=x-\frac{2 x^{2}}{L}+\frac{x^{3}}{L^{2}}, \quad N_{3}=\frac{3 x^{2}}{L^{2}}-\frac{2 x^{3}}{L^{3}}, \quad N_{4}=-\frac{x^{2}}{L}+\frac{x^{3}}{L^{2}}$

Q.3(a) Use Galerkin's method of weighted residuals to obtain an approximate solution of the
[5] 13 differential equation

$$
\frac{d^{2} y}{d x^{2}}-10 x^{2}=5 \quad 0 \leq x \leq 1
$$

With boundary condition $y(0)=0, y(1)=0$.
Q.3(b) Explain the local coordinate/area co-ordinate in context of triangular elements. [5] 3 3 Derive the shape function of constant strain triangle (CST) using local co-ordinates.
Q.4(a) Derive the Jacobian matrix for the isoperimetric mapping of linear element (shown in the figure)

Q.4(b) Evaluate the following integral using 2-point Gauss quadrature:

$$
\int_{0}^{1} \int_{0}^{2} x y d x d y
$$

Q.5(a) Explain the following steps in context of any commercial FE Application:
a) Pre-Processing
b) Analysis
c) Post-processing
Q.5(b) Derive then relation between the derivates with respected global Cartesian coordinates (x, y) and local co-ordinates (ξ, η) for isoperimetric mapping of 2D rectangular element.

