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Q.1(a) Derive the global stiffness matrix for an axially loaded bar, inclined to x axis by an 

angle 𝜃, of a plane truss using the element transformation. 
[5] 1 2 

Q.1(b) The plane truss shown in the given figure is composed of members having solid circular 
cross section of diameter 20 mm and modulus of elasticity E = 80 GPa. Compute the 
element stiffness matrix of member 2 in the global co-ordinate system. Also mention 
the force and displacement boundary conditions for the given truss. 
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Q.2(a) Derive the method of weighted residual statements (both strong form and weak form) 
for axially loaded bar show in the given figure. 

 

[5] 1 2 

Q.2(b) Calculate the equivalent nodal load vector for the beam given in Figure 3. 
Interpolation functions for two-nodded beam element is given by 
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Q.3(a) Use Galerkin’s method of weighted residuals to obtain an approximate solution of the 
differential equation 

 

With boundary condition 0)0( y , 0)1( y . 

[5] 1 3 

Q.3(b) Explain the local coordinate/area co-ordinate in context of triangular elements. 
Derive the shape function of constant strain triangle (CST) using local co-ordinates. 
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Q.4(a) Derive the Jacobian matrix for the isoperimetric mapping of linear element (shown in 
the figure) 

 

[5] 3 3 

Q.4(b) Evaluate the following integral using 2-point Gauss quadrature: 
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Q.5(a) Explain the following steps in context of any commercial FE Application: 
a) Pre-Processing 
b) Analysis 
c) Post-processing 

[5] 2 1 

Q.5(b) Derive then relation between the derivates with respected global Cartesian co-
ordinates (x, y) and local co-ordinates (ξ, η) for isoperimetric mapping of 2D 
rectangular element. 
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