BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH:	M.Tech. Civil		SEMESTER : II SESSION : SP/2023
		SUBJECT: CE506 FINITE ELEMENT METHOD	
TIME:	3 Hours		FULL MARKS: 50
INSTRUCT 1. The qu 2. Attemp 3. The min 4. Before	IONS: estion paper co ot all questions ssing data, if a attempting the	ontains 5 questions each of 10 marks and total 50 mar .ny, may be assumed suitably. e question paper, be sure that you have got the correc	ks.
5. Tables/	Data hand boo	ok/Graph paper etc. to be supplied to the candidates in	the examination hall.
			CO BI

- Q.1(a) Derive the global stiffness matrix for an axially loaded bar, inclined to x axis by an [5] 1 2 angle θ , of a plane truss using the element transformation.
- Q.1(b) The plane truss shown in the given figure is composed of members having solid circular [5] 1 4 cross section of diameter 20 mm and modulus of elasticity E = 80 GPa. Compute the element stiffness matrix of member 2 in the global co-ordinate system. Also mention the force and displacement boundary conditions for the given truss.

Q.2(a) Derive the method of weighted residual statements (both strong form and weak form) [5] 1 2 for axially loaded bar show in the given figure.

Q.2(b) Calculate the equivalent nodal load vector for the beam given in Figure 3. [5] 1 4 Interpolation functions for two-nodded beam element is given by

$$N_{1} = 1 - \frac{3x^{2}}{L^{2}} + \frac{2x^{3}}{L^{3}}, \quad N_{2} = x - \frac{2x^{2}}{L} + \frac{x^{3}}{L^{2}}, \quad N_{3} = \frac{3x^{2}}{L^{2}} - \frac{2x^{3}}{L^{3}}, \quad N_{4} = -\frac{x^{2}}{L} + \frac{x^{3}}{L^{2}}$$

Q.3(a) Use Galerkin's method of weighted residuals to obtain an approximate solution of the [5] 1 3 differential equation

$$\frac{d^2y}{dx^2} - 10x^2 = 5 \quad 0 \le x \le 1$$

With boundary condition y(0) = 0, y(1) = 0.

Q.3(b) Explain the local coordinate/area co-ordinate in context of triangular elements. [5] 3 3 Derive the shape function of constant strain triangle (CST) using local co-ordinates. Q.4(a) Derive the Jacobian matrix for the isoperimetric mapping of linear element (shown in [5] 3 3 the figure)

- Q.4(b) Evaluate the following integral using 2-point Gauss quadrature: [5] 3 3 $\int_{0}^{1} \int_{0}^{2} xy \, dx dy$
- Q.5(a) Explain the following steps in context of any commercial FE Application: [5] 2 1 a) Pre-Processing
 - b) Analysis
 - c) Post-processing
- Q.5(b) Derive then relation between the derivates with respected global Cartesian co- [5] 3 2 ordinates (x, y) and local co-ordinates (ξ, η) for isoperimetric mapping of 2D rectangular element.

:::::24/04/2023 E:::::