BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI

(MID SEMESTER EXAMINATION SP2023)

CLASS:	BTECH
BRANCH:	CIVIL

SEMESTER: VI
SESSION : SP2023
SUBJECT: CE416 OPEN CHANNEL FLOW
TIME: 02 Hours
FULL MARKS: $\mathbf{2 5}$

INSTRUCTIONS:

1. The question paper contains 5 questions each of 5 marks and total 25 marks.
2. Attempt all questions.
3. The missing data, if any, may be assumed suitably.
4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

		$C O$	BL	
Q.1(a)	Estimate the hydraulic depth and section factor of a right-angled triangular channel with 4 m flow depth.	$[2]$	2	K 3
Q.1(b)	Describe a method, with a clear diagram, to measure discharge in a large river.	$[3]$	1	K2

Q.2(a) With a neat sketch, draw hydraulic grade line and total energy line in a pipe flow and in a channel flow.
Q.2(b) The velocity distribution of a wide rectangular channel with 4 m flow depth is approximated as $u=0.6 y^{1 / 2} / \mathrm{h}$, where h is the total flow depth and y is the variable flow depth from the channel bottom. Find α and B.
Q.3(a) Define Shear Velocity. What is its dimension?
[2] $1 \quad \mathrm{~K} 1$
Q.3(b) Find the critical depth in a trapezoidal channel 20 m wide at the bottom with side slopes $1.5(\mathrm{H}): 1(\mathrm{~V})$ for a discharge of $50 \mathrm{~m}^{3} / \mathrm{s}$.
Q.4(a) Hydraulic radii in the most efficient trapezoidal and circular channel...
Q.4(b) A flow of $30 \mathrm{~m}^{3} / \mathrm{s}$ is carried in a 5 m wide rectangular channel at a depth of 1.0 m . Find the slope necessary to sustain uniform flow at this depth if $n=0.012$. What change in roughness would produce uniform critical flow at this discharge on the given slope?
Q.5(a) What is a critical hump? What is its height?
[2] 2 K 3
Q.5(b) What is the maximum discharge that may be carried by a 2.5 m wide rectangular channel [3] 1 K4 at a specific energy of 2.0 m ?

