BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP2023)

CLASS: BRANCH	BTECH SE CIVIL SE	SEMESTER : VI SESSION : SP2023			
TIME:	SUBJECT: CE416 OPEN CHANNEL FLOW 02 Hours FU	FULL MARKS: 25			
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 5 marks and total 25 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates 					
Q.1(a)	Estimate the hydraulic depth and section factor of a right-angled triangular channel w	vith	[2]	CO 2	BL K3
Q.1(b)	4 m flow depth. Describe a method, with a clear diagram, to measure discharge in a large river.		[3]	1	K2
Q.2(a)	With a neat sketch, draw hydraulic grade line and total energy line in a pipe flow and a channel flow.	d in	[2]	1	K2
Q.2(b)	The velocity distribution of a wide rectangular channel with 4 m flow depth approximated as u= 0.6 $y^{1/2}/h$, where h is the total flow depth and y is the variable fl depth from the channel bottom. Find α and β .	is low	[3]	1	K3
Q.3(a) Q.3(b)	Define Shear Velocity. What is its dimension? Find the critical depth in a trapezoidal channel 20 m wide at the bottom with side slop 1.5(H):1(V) for a discharge of 50 m ³ /s.	pes	[2] [3]	1 2	K1 K4
Q.4(a)	Hydraulic radii in the most efficient trapezoidal and circular chann	nels	[2]	2	K3
Q.4(b)	A flow of 30 m^3/s is carried in a 5m wide rectangular channel at a depth of 1.0m. F the slope necessary to sustain uniform flow at this depth if n=0.012. What change roughness would produce uniform critical flow at this discharge on the given slope?	ind in	[3]	2	K5
Q.5(a) Q.5(b)	What is a critical hump? What is its height? What is the maximum discharge that may be carried by a 2.5 m wide rectangular chan at a specific energy of 2.0 m?	inel	[2] [3]	2 1	K3 K4

:::::22/02/2023:::::M