CLASS:	BTECH	SEMESTER : VI
BRANCH:	CEED	SESSION : SP/2023

SUBJECT: CE416 OPEN CHANNEL FLOW
TIME: 3 Hours
FULL MARKS: 50

INSTRUCTIONS:

1. The question paper contains 5 questions each of 10 marks and total 50 marks.
2. Attempt all questions.
3. The missing data, if any, may be assumed suitably.
4. Before attempting the question paper, be sure that you have got the correct question paper.
5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.
Q. 1 (a) Differentiate, with examples, between (i) sub-critical laminar and supercritical turbulent flows (ii) Prismatic rigid and non-prismatic alluvial channels.
Q.1(b) Water flows in a rectangular channel 1 m wide at a depth of 0.1 m and a velocity of $1.5 \mathrm{~m} / \mathrm{s}$. Find the state of flow. Dynamic viscosity of water $=10^{-3} \mathrm{~Pa}-\mathrm{s}$
Q.2(a) Show that relation between the alternate depths y_{1} and y_{2} in a rectangular channel can be expressed by

$$
2 y_{1}{ }^{2} y_{2}{ }^{2}=\left(y_{c}\right)^{3} \quad \text { where } y_{c} \text { is the critical depth. }
$$

Q.2(b) Design a most efficient trapezoidal channel with side slopes $1: 1.5$ which is required to carry a discharge of $25 \mathrm{~m}^{3} / \mathrm{s}$ with a longitudinal slope of 1 m in 2 km . $\mathrm{N}=0.02$
Q.3(a) With a neat sketch, draw all the surface profiles formed when a mild slope meets a steep slope which then meets a mild slope.
Q.3(b) A rectangular channel 10 m wide carries a discharge of 30 cumecs. It is laid at a slope of 0.0001 . If a section in this channel the depth is 1.6 m , how far (upstream od downstream) from the section will the depth be $2 \mathrm{~m} ? \mathrm{~N}=0.015$
Q.4(a) What is a surge? Describe different types of surges.
Q.4(b) A spillway discharges flow at a rate of $7.75 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m}$. At the downstream horizontal apron the depth of flow was found to be 0.50 m . What tailwater depth is needed to form a hydraulic jump? If a jump is formed, find its (a) type, (b) length, (c) head loss, (d) energy loss as a percentage of the initial energy, and (e) profile
Q.5(a) What is flood routing? Derive Saint Venant's Equation for unsteady flow.
$\begin{array}{ccc}{[5]} & 2 & K 3 \\ {[5]} & 4 & K 5\end{array}$
[5] 4 K 5
Q.5(b) The values of K and X for a certain reach of river are 4.0 hrs and 0.15 respectively. [4+2] 4 K4 Route the inflow hydrograph whose co-ordinates are:

Period (hrs)	0	3	6	9	12	15	18		21
Inflow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	800	950	1100	1325	1300	1250		975	
Also estimate the time to peak and lag of the routed hydrograph.									
Allon									

