BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI

				(END S	SEMESTER EXA	MINATION)					
CLASS: BRANCH:		MCA MCA						SEMESTER: II SESSION: SP/2023			
TIME:		SUBJECT: CA435 MODERN ARTIFICIAL INTELLIGENCE 3 Hours							FULL MARKS: 50		
INSTR 1. The 2. Att 3. The 4. Bef 5. Tab	UCTIONS: e question empt all o e missing fore atten oles/Data	n pap ques data nptir hanc	per contains tions. , if any, may ng the questi lbook/Graph	5 questions of be assumed on paper, be paper etc. t	each of 10 mar suitably. sure that you o be supplied t	rks and tota have got t to the canc	al 50 marks. he correct que lidates in the e	stion paper xaminatior	r. 1 hall.		
Q.1(a)	(I) Differ -Rationa -Bounder -Turing 1 -Is AI a s	r enti l age d rat Test v cienc	ate the follo nt vs Autonor ionality vs Pe vs The Chines ce, or is it en	wing terms_(mous agent rfect rationa se room argur gineering? Or	<mark>any two):</mark> lity. nent. neither or botl	h? Explain.		Marks [3+2=5]	C0 C01	BL BL1 BL4	
0.1(b)	 (II) For the following activity, describe a PEAS description of the task environment and characterize it in terms of the properties: "Shopping for AI books on the Internet." (I) Interpret the task environment of the followings: 								C01	BL1 BL2	
	Task Environ ent	ım	Fully / Partially overserve d env.	Single/ Multiagent Env.	Deterministi c/ Stochastic/ Strategic	Episodic / Sequent ial	Discrete/ Continuou s	[2+3=5]	CO1 CO5	BL2 BL3	
	Chess with clock	a									
	(II) Appl from sim based ag	y any nple i gent i	y of the age reflex agent n a partially "Vacuum a g	nt designs (l to model-bas observable e gent" OR "A u	isted below) a sed agent to go nvironment. utomated taxi	nd describe bal-based as driving as a	e its evolution gent to utility- an example".		CO1	BL2 BL3	
Q.2(a)	(I) Descr -8-puzzle Climbing -Simulat -Genetic -Describe characte inequalit	ribe t e so g/Bes ed Ar e Algo e A* eristio ty, ar	the following blution usin t first search nealing with orithm with e search str cs: Admissib nd optimality	g terms <u>(any t</u> g any heu / A* algo.). example. xample. rategy with le heuristic,	<u>two):</u> ristic search the help of consistency,	technique applying monotonic	e (Apply Hill the following ity, triangular	[3+3=6]	CO2 CO5	BL2 BL3	
	(II) In CS + 	P pro Some TIME	blem, solve	the following	cryptarithmeti	ic problem:			CO5	BL3	
Q.2(b)	A game MAX mov giving al terminal game. H backed u reduce t measure	SPEN tree ves filterna stat low i up ut the n	T for the game irst, placing ating moves es, which ca minmax algo ility for winn umber of ste performance	e of tic-tac-to an X in an er by MIN (O) a n be assigne rithm solves ing X's or O's ps by prunin in terms of t	be. The top noo mpty square. V and MAX (X), u d utilities acco the tic-tac-too s. And how Alpl g branches for ime complexity	de is the in Ve show pa until we ev ording to th e problem na-Beta pru this proble v of alpha b	itial state, and rt of the tree, entually reach he rules of the by calculating ning algorithm em and how to eta pruning.	[4]	CO2 CO5	BL2 BL3	

Q.3(a)	(I) Formulate the following facts to <u>predicate logic form and clausal form.</u> <u>And also proof the conclusion using resolution</u> :	[5]	CO3	BL4 BL5 BL6
	-Everyone who loves all animals is loved by someone. -Anyone who kills an animal is loved by no one. - Jack loves all animals. -Either Jack or Curiosity killed the cat, who is named Tuna.			DEU
	Conclusion: Did Curiosity kill the cat?			
Q.3(b)	 (I) Convert these statements in predicate logic. (II) Convert these predicates to Clausal form. (III) proof the question using resolution. Explain the following terms with example (any two): (I) Matching: Quantitative and qualitative measures for matching OR String and Graph Matching with one example. (II) Approaches to knowledge representation: Frame, Conceptual Graph and Conceptual dependencies with one example of each. (III) Forward vs Backward Reasonings: with one example of each. 	[2.5x2= 5]	CO3	BL2 BL4 BL5
Q.4(a)	Differentiate the following terms with examples:	[222 5-	<u> </u>	DI 5
	(I) Monotonic Reasoning, Non-monotonic Reasoning and Default Reasoning with examples.	[2x2.5- 5]	05	BL3 BL4
	(II) Open world and Close world assumption with examples.			
Q.4(b)	Make brief notes on the following themes, providing examples as evidence (any two):		CO4	BL3 BL4 BL5
	I. An illustration of the Dempster-Shafer Theory.			DLJ
	II. Goal-stack planning using a block world as an example.			
	III. Example-Based Induction Learning.			
Q.5(a)	Describe the terms NLP , NLU and NLG . Explain briefly - Morphology analysis, syntactic processing, Semantic analysis, and Pragmatic analysis of NLP with examples	[5]	CO4	BL2 BL3
Q.5(b)	Define the term robotics. Explain the hardware component of robot and evaluate its path planning algorithms in certain and uncertain domains.	[5]	CO4 CO5	BL1 BL2 BL5

:::::01/05/2023:::::