BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH		SEMESTER : II SESSION : SP/2023		
TIME:	SUBJECT: CA419 ANALYSIS OF ALGORITHMS 3 Hours	FULL MAI	RKS: 50)
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 				
Q.1(a)	Is it reasonable to measure an algorithm's efficiency as a function of a parame indicating the size of the algorithm's input? What can be such other poten parameters.		CO CO1	BL BL4
Q.1(b)	Solve the recurrence $T(n) = 2T(n^{(1/2)}) + 1$. Your solution should be asymptotically tig Clearly specify the base condition you choose for solving this recurrence relation		CO1	BL3
Q.2(a)	The minimum spanning tree problem is the problem of finding a minimum spann tree for a given weighted connected graph. Outline an algorithm that construct minimum spanning tree through a sequence of expanding subtrees. The initial subt in such a sequence consists of a single vertex selected arbitrarily from the set of the graph's vertices. On each iteration, expand the current tree in a greedy man by simply attaching to it the nearest vertex not in that tree. This algorithm sho stop after all the graph's vertices have been included in the tree being construct Discuss the time complexity of this method.	ts a tree V of nner ould	CO2	BL3
Q.2(b)	Using suitable example(s) discuss the limitations of Dijkstra's algorithm for find the shortest paths (from a given source vertex to all the remaining vertices) i directed and weighted graph.		CO2	BL2
Q.3(a)	Give recurrence relation for recursive <i>binary search</i> algorithm and hence derive	e its [5]	CO3	BL3
Q.3(b)	average case complexity. Demonstrate the steps involved in sorting the following data set using standard me sort algorithm- ['Q', 'U', 'I', 'C', 'K', 'S', 'O', 'R', 'T']. How many time the merg of two intermediary subsets takes place?		CO3	BL2
Q.4(a)	Computing a binomial coefficient is a standard example of applying dyna programming to a non-optimization problem. In combinatorics, the binor coefficient, denoted $C(n, k)$ is the number of combinations (subsets) of k element from an n-element set ($0 \le k \le n$). Suggest an algorithm for computing the binor coefficient $C(n, k)$ by the dynamic programming algorithm. What is the t efficiency of this algorithm?	nial ents nial	C04	BL2
Q.4(b)	Give a dynamic programming solution for <i>all pairs shortest paths</i> problem.	[5]	CO4	BL2
Q.5(a)	Give an iterative solution to traversing a tree in infix manner. Discuss time complexity of this approach	the [5]	CO5	BL2
Q.5(b)	Differentiate the classes P, NP, and NPC. Using a Venn diagram depict how th classes are supposedly related to each other.	iese [5]	CO5	BL2

:::::27/04/2023:::::E