BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP2023)

CLASS: **BTECH SEMESTER: IV** BRANCH: BIOTECH SESSION: SP2023

SUBJECT: BE216 ENZYME TECHNOLOGY

TIME: 02 Hours **FULL MARKS: 25**

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 5 marks and total 25 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

Q1 Q1	(a) (b)	Explain with diagram: Fischer's Lock & Key model for enzyme-substrate reaction. Define specific activity of an enzyme. An enzyme of 1 μ g, catalyzed a reaction at a rate of 0.166 μ mol/min under optimum condition. Calculate the specific activity in IU/mg.	[2] [3]	CO CO1 CO1	BL BL2 BL4
Q2 Q2	(,	Differentiate multi-enzyme complex and multifunctional enzyme. Derive Michaelis-Menten equation for single-substrate reaction.	[2] [3]	CO2 CO2	BL2 BL3
Q3		Calculate Km and Vmax from the following table: (Graph not needed)	[5]	CO2	BL5

S (M)	V (nmole/L/min)
7×10 ⁻⁶	20
8×10 ⁻⁵	48
1×10 ⁻⁵	60
1×10 ⁻³	80
1×10 ⁻²	80

Q4	For an enzyme preparation, Vmax = 22 μ mole/L/min and Km = 4×10^{-5} M. what would be the velocity at 1.6 $\times10^{-5}$ M substrate and 5 $\times10^{-4}$ M uncompetitive inhibitor at Ki = 3×10^{-4} M?	[5]	CO2	BL5
Q5 (a)	An enzyme catalyzed the reaction at a velocity of 11 µmole/L/min. when the reaction is inhibited by non-competitive inhibitor, velocity reduced to 6	[2]	CO2	BL3
Q5 (b)	µmole/L/min. calculate the degree of inhibition. Write a short note on Isoenzymes.	[3]	CO1	BL2

:::::23/02/2023:::::M