BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	B. TECH : BIOTECH	B. TECH BIOTECH			SEMESTER: IV SESSION: SP/2023		
	SUBJECT: BE2	216 ENZYME TECHNOL	DGY				
FIME:	3 HOURS		FULL MARKS: 50				
NSTRUC 1. The q 2. Attem 3. The n 4. Befor 5. Table	TIONS: uestion paper contains 5 questions eac opt all questions. hissing data, if any, may be assumed su e attempting the question paper, be su s/Data hand book/Graph paper etc. to l	th of 10 marks and tot itably. Ire that you have got t be supplied to the can	al 50 marks. he correct quest didates in the ex	tion pap kaminat	er. ion hall		
 1 (a)	With suitable diagram, differentiate b	etween lock and key	and induced fit	[5]	C0 C01	BL BL2	
1 (b)	hypothesis of enzyme-substrate reaction. Suppose you are determining enzyme specific activity. The sample contains 20 mg of total protein estimated by Bradford method. After incubating with substrate for 30 min you obtained the product with OD500 value of 0.87. The equation of standard plot prepared separately (OD vs. concentration) with product is Y = 0.29X. Concentration is measured in mg/mL. Calculate the specific activity of the enzyme.				CO1	BL4	
2	Calculate graphically the value of Km an S (M)	nd Vmax from the follo V (nmole/L/min)	wing data	[10]	CO2	BL5	
	7×10 ⁻⁶	20					
	8×10 ⁻⁵	45					
	1×10 ⁻⁵	60					
	1×10 ⁻³	75					
	1×10 ⁻²	80					
3 (a) 3 (b)	Write the schematic flow steps for purification of an intracellular enzyme. An enzyme has a Km value of 4.7×10^{-5} M, and Vmax value of 25 mole/L/min. a. What will be the velocity in the presence of substrate concentration of 2.5×10^{-4} M and non-competitive inhibitor concentration of 3.5×10^{-4} M (Ki = 3×10^{-4} M) b. Calculate the degree of inhibition in this case.			[5] [5]	CO3 CO3	BL2 BL5	
<u>4</u> (a)	Explain any one enzyme immobilization disadvantages of that method?	method. What are the	advantages and	[5]	CO4	BL3	
4 (b)	Define effectiveness factor. Explain wh regime over mass transfer rate limited r	ny do you prefer react regime?	ion rate limited	[5]	CO4	BL3	
5 (a)	With example, briefly describe multifun	nctional enzymes		[5]	C05	BI 2	
5 (b)	With reaction, explain any two enzyr purpose.	mes that can be used	for Analytical	[5]	CO5	BL3	
4 (b) 5 (a) 5 (b)	disadvantages of that method? Define effectiveness factor. Explain wh regime over mass transfer rate limited r With example, briefly describe multifun With reaction, explain any two enzyr purpose.	ny do you prefer react regime? nctional enzymes. mes that can be used	ion rate limited	[5] [5] [5])4)5)5	

:::::27/04/2023:::::M