BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS:MTech BRANCH:SER(Aerodynamics) SEMESTER : II SESSION : SP/22

SUBJECT: SR576 Compressible Flows

FULL MARKS: 50

TIME:2 Hrs

INSTRUCTIONS:

1. The missing data, if any, may be assumed suitably.

2. Before attempting the question paper, be sure that you have got the correct question paper.

Q.1	Is it possible to accelerate a fluid to supersonic speed without the sonic velocity at the throat?	[2]
Q.2	What is the effect of friction on flow velocity in subsonic and supersonic Fanno flow ?	[2]
Q.3	What is the effect of heat gain and heat loss on the entropy of the fluid during Rayleigh flow ?	[2]
Q.4	Why the total enthalpy is not a constant for an unsteady adiabatic inviscid flow	[2]
Q.5	Differentiate between sound and a finite wave.	[2]
Q.6	What do you understand by the term "reverse nozzle"	[2]
Q.7	Discuss the different operations of supersonic intake.	[2]
Q.8	Describe with suitable diagram the performance curve of a supersonic intake	[2]
Q.9	Write down the different application areas where a shock train can exist.	[2]
Q.10	To maximise the pressure ratio across a shock wave in a shock tube, what should be the character of driver and driven gases.	[2]
Q.11	Justify that weak shock waves are very nearly isentropic	[2]
Q.12	What makes the flow field behind a stationary curved shock, rotational?	[2]
Q.13	What makes the large upstream diffusion for laminar layer (LBL) in comparison to turbulent layer (TBL)	[2]
Q.14	Write down the steps for the solution of Prandtl-Meyer expansion waves	[2]
Q.15	Define mass motion velocity	[2]
Q.16	Describe over and under expanded nozzles	[5]
Q.17	Explain the method of shock polar in solving oblique shock waves.	[5]
Q.18	Describe a right running wave with explanation about compression, expansion, condensation	[5]
Q.10 Q.19	and rarefaction List down the salient observations obtained from the theta-beta-M curve for an oblique shock	[5]

:::::25/04/2022 E:::::