BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI

CLASS:MTech BRANCH: SER		SEMESTER : II SESSION : SP/22	
SUBJECT: Heat Transfer in Space Applications (SR555)			
TIME: 2:00- 4:00 PM		FULL MARKS: 50)
INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper.			
Q.1(a)	Interpret the significance of "displacement" in Wien's displacement law.		[5]
Q.1(b)	(BT Level: 4, CO: 1) Briefly describe the budget of radiation heat flux directed towards a body with the he (BT Level: 4, CO: 1)	lp of equations.	[5]
Q.2(a)	Provide a guideline diagram for assessing the importance of different planets as pro thermal loads for a spacecraft orbiting near the Earth. (BT Level: 3, CO: 2)	bable sources of	[5]
Q.2(b)	Clearly demonstrate the differences among design, acceptance, and qualification ter for an IC based component used inside a spacecraft. (BT Level: 4, CO: 2)	nperature ranges	[5]
Q.3(a)	Explain the design concept of a MLI and provide outline of a suitable thermal analysis. (BT Level: 4, CO: 3)		[5]
Q.3(b)	Analyze the thermal problem associated with a spacecraft operating in an orbit near the phase in which it is in the shadow region. (BT Level: 4, CO: 3)	the Earth during	[5]
Q.4(a)	Derive an equation for tracking the skin temperature of a spacecraft subjected heating during the ballistic entry into Earth's atmosphere.	to aerodynamic	[5]
Q.4(b)	(BT Level: 5, CO: 4) Describe the role of drag in designing the shape of a spacecraft on the side of dir atmospheric air. (BT Level: 3, CO: 4)	ect contact with	[5]
Q.5(a)	Sketch the working principle of a cryocooler and compare with the CCA cryocooler u Webb telescope.	sed in the James	[5]

(BT Level: 3, CO: 5) Q.5(b) Estimate the mass of PCM and radiator surface area for a pulsing PCB circuitry cooling problem. [5] (BT Level: 3, CO: 5)

:::::04/05/2022:::::