BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: M.Tech
BRANCH: SER
SEMESTER: II
SESSION: SP/22

SUBJECT: SR552 Rocket Combustion Process

TIME: 2 hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q.1(a)	Describe the various zones in the combustion of a double base propellant with a schematic diagram stating the importance of each zone. What are the reactions rates considered for the single step reaction in the Boys and Corners theory?	[7]	CO1, L4, PO3, PO6
Q.1(b)	Explain the combustion mechanism of the composite solid propellant with the help of BDP model.	[3]	CO1,L3, PO3,PO4 PO6
Q.2(a)	Explain in detail the metal and metal oxide interaction properties in the combustion of metals.	[5]	CO2,L4, PO1,PO3, PO6
Q.2(b)	Describe the process of combustion of Al metal in a deflagrating propellant. What are the conclusions derived?	[5]	CO2,L3, PO3, PO6
Q.3(a)	Differentiate between the Marklund and Lake's Method with that of the Nadaud's Method for the determination of erosive function.	[5]	CO3,L4, PO1,PO3, PO6
Q.3(b)	How does the Razdan and Kuo's Model describe the phenomenon of erosive burning? How is this model different from the previous models of erosive burning?	[5]	CO3,L3, PO3, PO6
Q.4(a)	Analyze how the combustion of bipropellant droplet combustion is different from that of a monopropellant droplet.	[6]	CO4, L3, PO1, PO3
Q.4(b)	Explain clearly the different zones which occur in the combustion process of a liquid rocket engine with the help of a schematic diagram. Which zone has a pronounced effect on the combustion process?	[4]	CO4,L4, PO1, PO3
Q.5(a)	Derive a relation of burn rate for the Maxman Gilbert model for the combustion process in a hybrid rocket motor.	[5]	CO5,L3, PO1, PO3
Q.5(b)	What are the main methods of increasing the combustion efficiency in a hybrid rocket model? Explain the benefits and drawbacks of each methods used.	[5]	CO5, L3, PO1, PO3

:::::29/04/2022 E:::::