BIRLA INSTITUTE OF TECHNOLOGY, MESRA, F	≀ANCHI
(END SEMESTER EXAMINATION)	

	(END SEMESTER EXAMINATION)					
	CLASS:M BRANCH:	.Tech. Mechanical	SEMESTER : 2" SESSION : SP/2			
SUBJECT: ME531 THEORY OF ELASTICITY TIME:2Hours		FULL MARKS:	50			
	 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 					
		Explain the material and spatial description of a continuous body. A uniform deformation of a square block of side two units and initially $\mathbf{X} = (0, 0)$ is given. The deformation is defined by the mapping $\mathbf{x}(\mathbf{X}) = (3.5 + X_1 + 0.5X_2) \mathbf{\hat{e}}_1 + (4 + X_2) \mathbf{\hat{e}}_2 + X_3 \mathbf{\hat{e}}_3$. Determine deformation gradient tensor F .	centered at	[5] [5]		
	Q.2(a) Q.2(b)	Derive an expression of Generalized Hooke's Law. Explain the monoclinic materials, orthotropic materials and Isotropic ma	terials.	[5] [5]		
	Q.3(a) Q.3(b)	Derive an expression for Papkovich Representation in terms of displacem State the difference between Kelvin's and Mindlin's Problem.	ent field.	[5] [5]		
	Q.4(a)	In the xy-plane, consider a field $F(x, y)$ and a line defined by $f(x, y) =$ points on the line $f(x, y) = 0$ where $F(x, y)$ is a minimum or maximum; the extrema of $F(x, y)$ subject to the constrain $F(x, y) = 0$.		[5]		
	Q.4(b)	Explain the Rayleigh-Ritz method for approximate solutions.		[5]		
	Q.5(a)	Sketch the range of the function $w = z^{-1/n}$ if the argument of $z = re^{i\theta}$ return the interval $\theta_0 \le \theta \le \theta_0 + 2 \prod$. The domain δ is the finite z-plane with deleted.		[5]		
		Evaluate the plane and helf plane problems of complex verticable method		FE 1		

Q.5(b) Explain the plane and half-plane problems of complex variable method. [5]

:::::27/04/2022 E:::::