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Department of Mathematics, BIT Mesra, Ranchi

MA 428: Numerical and Statistical Method- UG

Instructions: Attempt all questions from Section A and any five questions from Section
B. Time: 2 hour

Section-A

1. The functional I(y(x)) =
∫ b

a
(y2 + y′2 − 2y sinx)dx has the following extremal with c1

and c2 as arbitrary constants.

(a) y = c1e
2x + c2e

−2x + 1
2
sinx (b) y = c1e

x + c2e
−x − 1

2
sinx

(c) y = c1e
2x + c2e

−2x + 1
2
cosx (d) y = c1e

x + c2e
−x + 1

2
sinx

2. A necessary condition that the integral I =
∫ x2

x1
F (x, y, y′)dx will be stationary is

(a) δI = const (b) δI = 0 (c) δI ̸= 0 (d) δI ̸= const

3. In an integral I =
∫ x2

x1
F (x, y, y′)dx if F is explicitly independent of x, then the Euler

Lagrange’s equation is

(a) F − y′ =const (b) F − y′ ∂F
∂y
=const (c) F − y′ ∂F

∂y′
=const (d) F=const

4. Find the central second difference of u in y-direction using the Taylor series expansion.
(Note- i and j are in x and y− direction respectively).

(a)
ui,j+1+2ui,j+ui,j−1

(∆y)2
(b)

ui,j+1−2ui,j+ui,j−1

(∆y)2
(c)

ui,j+1−2ui,j−ui,j−1

(∆y)2
(d)

ui,j+1+2ui,j−ui,j−1

(∆y)2

5. The truncation error in a finite difference expansion is −
(

∂2u
∂x2

)
ij

∆x
2
−

(
∂3u
∂x3

)
ij

(∆x)3

6
.

What is the order of accuracy of the finite difference equation?

(a) 2 (b) -2 (c) 1 (d) -1

6. The partial differential equation ∂2u
∂t2

= c2
(

∂2u
∂x2 +

∂2u
∂y2

)
; where c ̸= 0 is known as

(a) Heat equation (b) Wave equation

(c) Poisson’s equation (d) Laplace equation

7. The extremum of the functional I =
∫ 1

0
(( dy

dx
)2 + 12xy)dx satisfying the condition

y(0) = 0, y(1) = 1 is attained on the curve

(a) y = sin2 πx
2

(b) y = sin πx
2

(c) y = x3 (d) y = 1
2
(x3 + sin πx

2
)

8. The lowest eigen value of the 2× 2 matrix

[
4 2
1 3

]
is

(a) 1 (b) 4 (c) 5 (d) 2

9. Matrix P to convert the matrix 1 2 3
2 1 −1
3 −1 1





into tridiagonal matrix using Given’s method is

(a)

1 0 0
0 2√

13
−3√
13

0 3√
13

2√
13

 (b)

1 0 0
0 2

13
−3
13

0 3
13

2
13

 (c)

1 0 0
0 2

3
−3
2

0 3
2

2
3

 (d) None

10. The general solution of the partial differential equation ∂2z
∂x∂y

= x+ y is of the form

(a) 1
2
xy(x+ y) + F (x) +G(y) (b) 1

2
xy(x− y) + F (x) +G(y)

(c) 1
2
xy(x− y) + F (x)G(y) (d) 1

2
xy(x+ y) + F (x)G(y)

11. Find the first-order forward difference approximation of (∂u
∂x
)i,j using the Taylor series

expansion (Note- i and j are in x and y− direction respectively).

(a)
ui,j+1−ui,j

2∆x
(b)

ui+1,j−ui,j

2∆x
(c)

ui,j+1−ui,j

∆x
(d)

ui+1,j−ui,j

∆x

12. The set of linearly independent solutions of the differential equation d4y
dx4 − d2y

dx2 = 0 is

(a) 1, x, e−x, xe−x (b) 1, x, ex, xex (c) 1, x, ex, e−x (d) 1, x, ex, xe−x

13. What is the least order of accuracy for the second derivatives?

(a) first-order (b) third-order (c) fourth-order (d) second-order

14. If the partial differential equation (x− 1)2uxx− (y− 2)2uyy +2xux+2yuy +2xyu = 0
is parabolic in S ∈ R2 but not in R2/S, then S is

(a) { (x, y) ∈ R2 : x = 1 or y = 2} (b) { (x, y) ∈ R2 : x = 1 and y = 2}
(c) { (x, y) ∈ R2 : x = 1} (d) { (x, y) ∈ R2 : y = 2}

15. Absolute value of the largest eigen value using the power method for the matrix[
2 −12
1 −5

]
with the initial condition [1, 1] is

(a) 1 (b) 2.8 (c) 2 (d) None

Section-B

16. Find D’Alembert’s solution of one-dimensional wave equation with the following ini-
tial conditions:

u(x, 0) = sinx, ut(x, 0) = cos x.

17. A string is fixed at x = 0 and x = L and lies initially along the x axis. If it is set
in motion by giving all points 0 < x < L a constant transverse velocity ∂u

∂t
= u0 at

t = 0, then find the subsequent motion of the string.

18. Explain FTCS (forward time central space ) scheme for heat equation ut = uxx.

19. Discuss the stability of the FTCS (forward time central space) scheme for heat equa-
tion using Von-Neumann analysis.
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20. Find the weak form (variational form) of the following equations:

−d2u

dx2
= cosπx, 0 < x < 1; u(0) = u(1) = 0

21. Solve the problem described by the following equations using Finite Element Method
(FEM)

−d2u

dx2
= cosπx, 0 < x < 1; u(0) = u(1) = 0

Use the uniform mesh of three linear elements to solve the problem.
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