BIRLA INSTITUTE OF TECHNOLOGY MESRA, RANCHI DEPARTMENT OF MATHEMATICS END SEMESTER EXAMIMATION

Class: MSc/ PhD Course: MA423 Numerical Methods Time : 2 hours

Session: SP/2022 Maximum Marks : 50

1(a)	Derive the Newton-Raphson method formula to find reciprocal and to find nth	5m
	root. When does the method fail? Solve the following by the Newton-Raphson	
	method $3x = \cos x + 1$	
1(b)	Solve $x^3+x-1=0$ by iterative method, take initial approx. as $x_0 = 1.0$.	5m
2(a)	Solve the following system by the Gaussian – Elimination method $2x - 7y + 4z = 9$; $x + 9y - 6z = 1$; $-3x + 8y + 5z = 6$	5m
2(b)	Compare the of Gauss Jacobi and Gauss seidel methods and hence solve the	5m
2(0)	following by Gauss seidel Method or Jacobi method	5111
	x + y + 54z = 110, $27x + 6y - z = 85,$ $6x + 15y + 2z = 72$	
3(a)	Find all the eigenvalues and eigenvectors of the matrix using the Jacobi Method	5m
	[2 3 1]	
	or Givens method $\begin{bmatrix} 2 & 3 & 1 \\ 3 & 2 & 2 \\ 1 & 2 & 1 \end{bmatrix}$.	
2(h)		5.00
3(b)	Find the largest eigenvalue in modulus and the corresponding eigenvector of the Γ_{-15} A_{-31}	5m
	matrix using power method $\begin{bmatrix} -15 & 4 & 3\\ 10 & -12 & 6 \end{bmatrix}$.	
	$\begin{bmatrix} 10 & 12 & 0 \\ 20 & -4 & 2 \end{bmatrix}$	
4(a)	Evaluate $\int_0^1 \frac{dx}{(1+x^2)}$, using trapezoidal rule or Simpsons 3/8 rule. How to find the	5m
	error in Trapezoidal and Simpson's 1/3 method? Briefly explain.	
4(b)	Using table find y (10) using Newton's divided differences and Lagrange	5m
	interpolation	
	X 8 9 9.5 11	
	Y 2.709442 2.197225 2.251292 397895	
5(a)	Solve the Following Boundary value problem $y'' + 2xy' + 2y = 5x$, h=0.1,	5m
	y(0)=1, $y(0.5)=1.5$ by difference method. (Any other data required may be	
	assumed)	
5(b)	If $\frac{dy}{dx} = x^2 + y^2$; $y(0) = 1$ Find $y(0.1)$ and $y(0.2)$ by Euler Method or Runge-Kutta	5m
	fourth order method.	