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Section A: Answer all [2X15=30]

1. The integral equation:

∫ x

0

1√
x− t

y(t)dt =
√
x has the solution: [2]

(a) y(x) =
x

2
(b) y(x) =

1

2
(c) y(x) =

x2

2
(d) y(x) =

x2

2!

2. The initial value problem: y′′(x) + xy(x) = 1, y′(0) = 0, y(0) = 0 is equivalent to [2]
the integral equation:

(a) y(x) =
x

2
+

∫ x

0

x(x− t) y(t) dt (b) y(x) =
x

2
+

∫ x

0

t(t− x) y(t) dt

(c) y(x) =
x2

2
+

∫ x

0

x(x− t) y(t) dt (d) y(x) =
x2

2
+

∫ x

0

t(t− x) y(t) dt

3. The boundary value problem: y′′(x) + y(x) = 0, y(0) = 1, y′(1) = 0 is equivalent to [2]
the integral equation:

(a) y(x) = x+

∫ 1

0

k(x, t) y(t) dt, where, k(x, t) =

{
t, x < t

x, x > t

(b) y(x) = 1 +

∫ 1

0

k(x, t) y(t) dt, where, k(x, t) =

{
t, x < t

x, x > t

(c) y(x) = 1 +

∫ 1

0

k(x, t) y(t) dt, where, k(x, t) =

{
t, t < x

x, t > x

(d) none of these

4. The initial value problem corresponding to the integral equation: [2]

y(x) = 1 +

∫ x

0

y(t) dt is

(a) y′(x)− y(x) = 0, y(0) = 1 (b) y′(x)− y(x) = 0, y(0) = 0
(c) y′(x) + y(x) = 0, y(0) = 1 (d) y′(x) + y(x) = 0, y(0) = 0

5. The integral equation: y(x) = λ

∫ 1

0

sin(πx) cos(πt) y(t)dt has [2]

(a) atleast one eigen value and corresponding eigen function
(b) infinitely many eigen values and corresponding eigen functions
(c) no eigen value and eigen function
(d) none of these



6. The eigen value of the integral equation: y(x) = λ

∫ π/4

0

sin2 x y(t) dt is [2]

(a) λ =
8

π − 2
(b) λ =

8

π
(c)

4

π − 2
(d)

4

π

7. The solution of the integral equation: y(x) = x+

∫ 1

0

xt2 y(t) dt is given by: [2]

(a) y(x) =
3x

4
(b) y(x) =

4x

3
(c) y(x) =

2x

3
(d) y(x) =

3x

2

8. For the integral equation: y(x) = f(x) + λ

∫ x

a

k(x, t) y(t) dt, the iterated kernels [2]

km(x, t) are defined by:

(a) k(x, t) = k1(x, t); km(x, t) =

∫ x

a

k(x, z) km−1(z, t)dz

(b) k(x, t) = k1(x, t); km(x, t) =

∫ x

t

k(x, z) km−1(z, t)dz

(c) k(x, t) = k1(x, t); km(x, t) =

∫ x

t

k1(x, z) km−1(z, t)dt

(d) k(x, t) = k1(x, t); km(x, t) =

∫ x

a

k1(x, z) km−1(z, t)dt

9. The iterated kernel K2(x, t) for the integral equation y(x) = f(x) + λ

∫ π

0

ex cos t y(t)dt is [2]

(a) k2(x, t) = −1 + eπ

2
ex cos t, (b) k2(x, t) =

1 + eπ

2
ex cos t,

(c) k2(x, t) = −1− eπ

2
ex cos t, (d) k2(x, t) =

1− eπ

2
ex cos t.

10. The iterated kernel K2(x, t) for the integral equation y(x) = f(x) + λ

∫ x

a

2 + cos x

2 + cos t
y(t)dt is [2]

(a) k2(x, t) =
2 + cosx

2 + cost
(x− a) (b) k2(x, t) =

2 + cosx

2 + cost
(x− t)

(c) k2(x, t) =
2 + cosx

2 + cost
(a− x) (d) k2(x, t) =

2 + cosx

2 + cost
(t− x)

11. The second order approximation of the integral equation: y(x) = 1 + λ

∫ 1

0

(x+ t)y(t) dt [2]

with y0(x) = 1 is given by:

(a) y2(x) = 1 + λ

(
x− 1

2

)
+ λ2

(
x+

7

12

)
(b) y2(x) = 1 + λ

(
x− 1

2

)
+ λ2

(
x− 7

12

)

(c) y2(x) = 1 + λ

(
x+

1

2

)
+ λ2

(
x+

7

12

)
(d) y2(x) = 1 + λ

(
x+

1

2

)
+ λ2

(
x+

7

2

)
12. A nonnull, symmetric L2 kernel K(x, t) is non-negative if and only if: [2]

(a) all its eigenvalues are negative
(b) all its eigenvalues are positive
(c) some of its eigenvalues are negative
(d) none of these
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13. The necessary and sufficient condition that the 2nd order homogeneous linear differential [2]

equation: a0(x)
d2y

dx2
+ a1(x)

dy

dx
+ a2(x)y = 0, a ≤ x ≤ b, to be self adjoint is that:

(a) a0(x) = a′1(x) (b) a′0(x) = −a1(x) (c) a′1(x) = −a0(x) (d) a′0(x) = a1(x)

14. The euquivalent self-adjoint equation the differential equation y′′ − (tanx)y′ + y = 0 is : [2]

(a) (cosx)y′′ − (sinx)y′ + (cosx)y = 0 (b) (cosx)y′′ + (sinx)y′ + (cosx)y = 0
(c) (sinx)y′′ − (cosx)y′ + (sinx)y = 0 (d) none of these

15. The adjoint equation of: x2y′′ + 7xy′ + 8y = 0 is [2]

(a) x2y′′ − 3xy′ + 3y = 0 (b) x2y′′ + 3xy′ + 3y = 0
(c) x2y′′ − 3xy′ − 3y = 0 (d) x2y′′ − 3xy′ + y = 0

Section B: Answer five question only: [4X5=20]

16. Prove that

∫ x

a

∫ x

a

∫ x

a

.....

∫ x

a

f(t)dt.........dtdtdt =
1

(n− 1)!

∫ x

a

(x− t)n−1f(t)dt . [4]

17. Prove that the resolvent kernel R(x, t;λ) for the integral equation y(x) = f(x) + λ

∫ b

a

k(x, t)y(t)dt

satisfies the integral equation: R(x, t;λ) = k(x, t) + λ

∫ b

a

k(x, z)R(z, t;λ)dz. [4]

or,

Prove that the resolvent kernel R(x, t;λ) for the integral equation y(x) = f(x) + λ

∫ x

a

k(x, t)y(t)dt

satisfies the integral equation: R(x, t;λ) = k(x, t) + λ

∫ x

t

k(x, z)R(z, t;λ)dz. [4]

18. Prove that if a kernel is symmetric then all its iterated kernels are symmetric. [4]
or,
Prove that the eigenfunctions of a symmetric kernel, corresponding to different [4]
eigenvalues are orthogonal.

19. Using Green’s function solve the following boundary value problems: [4]
y′′(x) + y(x) = x2, y(0) = 0, y(π/2) = 0,

20. Solve the following integro-differential equation: y′(x) = x+

∫ x

0

cos ty(x− t)dt, y(0) = 4 [4]

(********** 29-04-2022 **********)
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