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Instruction:

The question paper has two sections. In section A there are 15 MCQ of 2 marks each. In section B there
are 7 subjective type questions. You have to attempt all the questions.

We use the following notations: Mn×n(R) denotes the set of all n× n real matrices, Pn(R) denotes the
set of all polynomials of degree less than or equal to n, P(R) denotes the set of all polynomials. For a linear
transformation T , N(T ) is the kernel space of T , R(T ) is the range space of T , Eλ(T ) is the eigenspace of
T corresponding to λ.

Section A

1. Which one of the following is not a subspace of Mn×n(R)?

(a) {A ∈Mn×n(R) : At = A}.
(b) {A ∈Mn×n(R) : At = −A}.
(c) {A ∈Mn×n(R) : tr(A) = 1}.
(d) {A ∈Mn×n(R) : tr(A) = 0}.

2. Let A ∈M9×9(R) be a matrix such that A2 = A. Which of the following is necessarily true?

(a) A must be the identity matrix.

(b) A is diagonalizable.

(c) A must be a zero matrix.

(d) rank of A is either 0 or 1.

3. Let A ∈M4×4(R) be a non-zero matrix such that A5 = 0. Which one of the following can be true?

(a) A4 = I.

(b) A4 = A.

(c) A4 = 0.

(d) A4 = −I.



4. Let V be a vector space of dimension n. Which one of the following statement is false?

(a) every linearly independent subset of V contains no more than n vectors.

(b) Any linearly independent subset of V that contains exactly n vectors is a basis.

(c) each generating set of V contains at least n vectors.

(d) Any subset of V that contains exactly n vectors is a basis.

5. The sum of eigenvalues of

 −1 −2 −1
−2 3 2
−1 2 −3

 is

(a) -3.

(b) -1.

(c) 3.

(d) 1.

6. Let T : R5 → R5 be such that T (x1, x2, x3, x4, x5) = (21x1 + 7x2,−11x1 + 9x2,−19x2 + 35x3, 15x2 +
12x4 + 20x5,−24x3 + 21x4 + 35x5). Then rank(T ) is

(a) 1.

(b) 2.

(c) 3.

(d) 4.

7. Number of linearly independent eigenvectors of


2 2 0 0
2 1 0 0
0 0 3 0
0 0 1 4

 is

(a) 1

(b) 2

(c) 3

(d) 4

8. Which one of the following statement is false?

(a) There is an one-to-one linear transformation T : R2 →M2×2(R).

(b) There is an onto linear transformation T : P3(R)→ R3.

(c) There is an one-to-one linear transformation T : R3 → R5.

(d) None of the above.

9. Which of the following set is linearly dependent?

(a) {−x3 + 2x2 − 5x,−x2 + 3x+ 1, x3 − x2 + 2x− 1} in P3(R).

(b) {1, 1 + x, 1 + x+ x2, 1 + x+ x2 + x3} in P3(R).

(c) {(1, 0, 0,−1), (0, 1, 0,−1), (0, 0, 1,−1), (0, 0, 0, 1)} in R4.

(d) none of the above.



10. Let u, v ∈ Rn with the standard inner product. Consider the statements:

P: There exist u and v such that ||u||2 = 9, ||v||2 = 25, ||u+ v||2 = 4 and ||u− v||2 = 16.

Q: There exist u and v such that ||u|| = 2, ||v|| = 2 and 〈u, v〉 = 5.

Then

(a) both P and Q are true.

(b) P is true but Q is false.

(c) Q is true but P is false.

(d) both P and Q are false.

11. Let T1, T2 : P(R)→ P(R) be such that T1(p(x)) =
∫ x
0 p(t)dt and T2(p(x)) = p

′
(x). Then

(a) T1 is one-one but T2 is not.

(b) T1 is onto and T2 is one-one.

(c) T2 is one-one but T1 is not.

(d) both T1 and T2 are one-one.

12. Let u and v be distinct vectors in R3. Consider the statements:

P: {u, v} is linearly dependent if and only if u or v is a multiple of other.

Q: there exists three linearly dependent vectors in R3 such that none of the three is a multiple of
another.

Then

(a) both P and Q are true.

(b) P is true but Q is false.

(c) Q is true but P is false.

(d) both P and Q are false.

13. Which one of the following is a subspace of R3 under the usual addition and scalar multiplication?

(a) {(a1, a2, a3) ∈ R3 : a1 = a3 + 2}.
(b) {(a1, a2, a3) ∈ R3 : 2a1 − 7a2 + a3 = 0}.
(c) {(a1, a2, a3) ∈ R3 : a1 + 2a2 − 3a3 = 1}.
(d) {(a1, a2, a3) ∈ R3 : 5a21 + 2a22 − 3a23 = 0}.

14. Which of the following is not a linear transformation?

(a) T : R2 → R2 such that T (x1, x2) = (x1, x
2
2).

(b) T : R3 → R2 such that T (x1, x2, x3) = (x1 + 2x2, 5x3).

(c) T : R3 → R3 such that T (x1, x2, x3) = (x1 + 2x3, 0, x1 + x2).

(d) none of the above.



15. Let Sn×n(R) be the set of all n × n skew-symmetric matrices and the characteristics polynomial of
each A ∈ Sn×n(R) is of the form tn + an−2t

n−2 + an−3t
n−3 + · · · + a1t + a0. Then the dimension of

Sn×n(R) over R is

(a) n(n−1)−2
2 .

(b) n(n−1)
2 .

(c) (n−1)2

2 .

(d) (n+2)(n−1)
2 .

Section B

16. Find bases for the following subspaces of R5:

W1 = {(x1, x2, x3, x4, x5) ∈ R5 : x1 − x2 − x3 = 0}
and

W2 = {(x1, x2, x3, x4, x5) ∈ R5 : x1 = x2 = x4 = 0 and x3 + x5 = 0}.

What are the dimensions of W1 and W2?

2

17. Give an example of distinct linear transformations T,U : R2 → R2 such that N(T ) = N(U) and
R(T ) = R(U). Justify your answer.

3

18. Let V be a vector space and T : V → V be linear. Prove that T 2 = T0 if and only if R(T ) ⊆ N(T ).
(T0 is the zero operator.)

2

19. Let V,W and Z be vector spaces, and let T : V → W and U : W → Z be linear. Prove that if U ◦ T
is one-to-one, then T is one-to-one. Must U also be one-to-one? Justify your answer.

Can you find linear transformations S : R2 → P2(R) and T : P2(R)→ R2 such that S ◦T = I? Justify
your answer.

3+2=5

20. Let V be a finite dimensional vector space and T : V → V be a linear operator. Let W be an one
dimensional T -invariant subspaces of V . Show that W = Eλ(T ) for some eiganvalue λ of T . (W is
said to be T -invariant if T (W ) ⊆W ).

Let T : R2 → R2 be the linear operator T (x1, x2) = (2x1−3x2, 2x1−2x2). Show that only T -invariant
subspaces of R2 are R2 and the zero subspace.

2+2=4



21. Let A ∈M2×2(R) be of rank 1. Show that A is either nilpotent or diagonalizable.

2

22. Let A ∈M11×11(R) be a nonzero matrix such that A11 = 0. Show that A is not diagonalizable.

2




