BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCI	IMSC I: MATHS & COMPUTING	SEMESTER : II SESSION : SP/22	
TIME:	SUBJECT: MA106-ORDINARY DIFFERENTIAL EQUATION 3 Hours	FULL MARKS: 50	1
INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.			
Q.1(a) Q.1(b)	Find the orthogonal trajectories of the family of curves $r^n = a^n \cos n\theta$ where a is a Find the general solution of the differential equation $p(p+x) = y(x+y)$.	a parameter	[5] [5]
Q.2(a) Q.2(b)	Using the method of variation of parameters, find the general solution of $y'' + n^2 y$: Solve the differential equation $x^2 y'' - xy' = 12x \log x$.	$=\cos nx.$	[5] [5]
Q.3(a) Q.3(b)	Solve the differential equation $yzdx + xzdy + xydz = 0$, first showing that it is integrulating Natani's method, solve the total differential equation: $(x^2 + y^2 + z^2)dx - 2xydy - 2xzdz = 0$.	rable.	[5] [5]
Q.4	Find the power series solution about the point $x = 0$ of the differential equation: $y'' + xy' + x^2y = 0$.		[10]
Q.5(a)	Using the Picard's method, find the first three approximations to the solution of init $y' = 1 + y^2$, $y(0)=0$.	ial value problem:	[5]
Q.5(b)	Find the eigenvalues and eigenfunctions of the SLP: $(x^3y')' + \lambda xy = 0$, $y(0) = 0$, $y(1) = 0$.		[5]

:::::19/07/2022:::::