BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	IMSC H: MATHS AND COMPUTING	SEMESTER EXAMINATION) SEMESTER : II SESSION : SP/22	
TIME:	03 HOURS	SUBJECT: MA105 CALCULUS II FULL MARKS: 50	
1. The 2. Atter 3. The	mpt all questions. missing data, if any, may be as	stions each of 10 marks and total 50 marks. sumed suitably. r etc. to be supplied to the candidates in the examination hall.	
Q.1(a) Q.1(b)	Find the angle between the line Find the distance of the point ($e^{\frac{x-x_1}{l}} = \frac{y-y_1}{m} = \frac{z-z_1}{n} \text{ and the plane } ax + by + cz + d = 0.$ 1, 2, -4) from the line $\frac{x-3}{2} = \frac{y-1}{-5} = \frac{z+2}{3}.$	[5] [5]
	in the xy -plane defined by $0 \leq 1$	ine the volume of the region below $z = 4 - xy$ and above the region $\leq x \leq 2, 0 \leq y \leq 1$.	[5] [5]

- Q.2(b) Evaluate $\int \int_D 4xy 7 \, dA$ using polar coordinates, where D is the portion of $x^2 + y^2 = 2$ in the first [5] quadrant.
- Q.3(a) Find the unit vector normal to the surface $x^2 + yz$ at the point (1, 1, 1). [5]
- Q.3(b) Find the divergence and curl of the vector $\vec{V} = (xyz)\hat{i} + 3x^2y\hat{j} + (xz^2 y^2z)\hat{k}$. [5]
- Q.4(a) Evaluate $\int_C \vec{F} \cdot \vec{dr}$ where $\vec{F}(x, y) = 3\hat{\imath} + (xy 2x)\hat{\jmath}$ and *C* is left half of the circle centered at the [5] origin of radius 4 with counter-clockwise direction.
- Q.4(b) Use Divergence Theorem to evaluate $\int \int_{S} \vec{F} \cdot \vec{ds}$, where $\vec{F} = yx^{2}\hat{\imath} + (xy^{2} 3z^{4})\hat{\jmath} + (x^{3} + y^{2})\hat{k}$ [5] and S is the portion of the sphere of radius 4 with $z \leq 0$ and $y \leq 0$. Note that all three surfaces of this solid are included in S.
- Q.5(a) Find the expression for gradient of $\phi(u_1, u_2, u_3)$ in orthogonal curvilinear coordinates. [5]
- Q.5(b) Find the expression for divergence of $\vec{F} = F_1 \hat{e_1} + F_2 \hat{e_2} + F_3 \hat{e_3}$ in spherical coordinates. [5]

:::::18/07/2022:::::