

BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	M.Tech. I: EEE	SEMESTER: II SESSION: SP/22	
SUBJECT: EE553 Nonlinear Control System			
TIME:	2 hrs.	FULL MARKS: 50	
 INSTRUCTIONS: 1. The question paper contains 6 questions each of 5+5 marks. 2. Attempt any 5 questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Graph paper to be supplied to the candidates in the examination hall. 			
Q.1(a)	Interpret singular points. Discuss with and unstable node.	proper diagram: saddle point, stable and unstable focus, stable	[5] CO1 L2
Q.1(b)		cal phase trajectory for the following satellite-attitude control	[5] CO2 L4

- Q.2(a) Discuss jump resonance phenomenon in forced nonlinear springs.
- Q.2(b) Compute stability analysis applying the concept of describing function to a nonlinear system. Identify [5] and differentiate the stable and unstable limit cycles at A and B for the following plots with proper CO3 L4 explanation. Label the limitations of these predictions.

[5] CO3 L4 Q.3(a) Apply variable gradient method to examine the stability of the origin of the system described by $x_1 = -x_1 + 2x_1^2 x_2$ and $x_2 = -x_2$

Q.3(b) Examine the stability of the equilibrium state of the system by direct and indirect methods, [5] CO3 L4 described by $\dot{x_1} = x_2$ and $\dot{x_2} = -x_1 - x_1^2 x_2$ Illustrate that Lyapunov's linearization method fails while the direct method can easily solve this problem.

Q.4(a) Consider the nonlinear control-affine system $\dot{x} = f(x) + g(x)u$ [5] CO3 L4 Perform transformation of states into linearizable form for the system a.) $\dot{x}_1 = a \sin x_2$; $\dot{x}_2 = -x_1^2 + u$; and find the control law b.) $\dot{x}_1 = a \sin x_2$; $\dot{x}_2 = -x_1^2 + u$; $y = x_2$; find control law using input-output linearization

[5] CO2 L3

4.(b) Define Lie derivative. Find $L_f h(x)$, $L_g h(x)$ when

$$h(x) = \frac{1}{2}(x_1^2 + x_2^2);$$

$$f(x) = \begin{bmatrix} -x_2 \\ -x_1 - \mu(1 - x_1^2)x_2 \end{bmatrix}; g(x) = \begin{bmatrix} -x_1 - x_1x_2^2 \\ -x_2 + x_1^2x_2 \end{bmatrix}$$

Q.5(a)Consider a nonlinear system described by the equations: $\dot{x}_1 = -3x_1 + x_2$; $\dot{x}_2 = x_1 - x_2 - x_2^3$ [5]Using the Krasovskii method for constructing the Lyapunov function with P as identity matrix,
investigate the stability of the equilibrium state. Find a region of asymptotic stability.CO4 L4Q.5(b)Design a Lyapunov function-based control law to stabilize the following nonlinear system.[5] $\dot{x}_1 = x_2^3$; $\dot{x}_2 = u$ CO5 L5

2

Q.6(a)

Define 1-norm, 2-norm, and ∞ -norm for the vector [-3]

Fill in the blanks:

For the existence of a sliding mode on the switching surface, the state velocity vectors should be directed ------(towards/ away from) the surface, i.e., the system must be ------ (stable/ unstable) to the switching surface.

A system with m inputs can have ______ switching functions and ______ sliding surfaces

Q.6(b) What are the steps in designing a sliding mode controller? Mention the advantages. Why is a sliding [5] mode robust? What is chattering and why is this undesirable? CO2 L2

:29/04/2022:

[5] CO3 L3

[5] CO2 L3