BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH:	IMSC QEDS		SEMESTER : II SESSION : SP/2022
TIME:	3 HOURS	SUBJECT: ED113 STATISTICAL METHODS II	FULL MARKS: 50
INSTRUCTI 1. The que 2. Attempt 3. The mis 4. Tables/I	ONS: estion paper con t all questions. ssing data, if any Data hand book/	tains 5 questions each of 10 marks and total 50 mark , may be assumed suitably. Graph paper etc. to be supplied to the candidates in	s. the examination hall.

- Q.1(a) With $x_1 = 23$, $x_2 = 66$, and $x_n = 3x_{n-1} + 5x_{n-2} \mod(100)$, $n \ge 3$, define the sequence $u_n = x_n/100$, [5] $n \ge 1$. Find its first 14 values.
- Q.1(b) Give an efficient algorithm to generate first 10 units of a non-homogenous Poisson process [5] CO1 having intensity function

$$\lambda(t) = \begin{cases} \frac{t}{5}, & 0 < t < 5\\ 1 + 5(t - 5), & 5 < t < 10. \end{cases}$$

Q.2 Suppose that X is a discrete random variable with the following probability mass function: [10] CO2 where $0 \le \theta \le 1$.

Х	0	1	2	3
P(X)	20/3	θ/3	2(1-0)/3	(1-0)/3

A sample of 10 observations is drawn from the above distribution: (3,0,2,1,3,2,1,0,2,1). Find the maximum likelihood estimate and method of moment estimate of θ .

Q.3 In a study relating to the traffic conditions in the city, the average daily numbers of motor [10] CO3 car accidents during April, 1998 were found to be as follows.

Zone	Average Daily Number		
North	17		
East	13		
South	10		
West	12		
Central	14		

Do you think that the traffic problem is equally acute in all five zones? (Given $X_{0.05,4}^2 = 9.488$).

Q.4 If $X_1, X_2, \dots, X_n \sim i.i.d. N(\mu, \sigma^2)$, then find the MVUE of μ^2 .

[10] CO4

- Q.5(a) Suppose we collect data for a group of students in a statistics class with variables X_1 = hours [5] studied, X_2 = undergrad GPA, and Y = receive an A. We fit a logistic regression and estimated coefficients, $\hat{\beta}0 = -6$, $\hat{\beta}1 = -6$, $\hat{\beta}2 = 1$. Estimate the probability that a student who studies for 40 hours and has an undergrad GPA of 3.5 gets an A in the class.
- Q.5(b) How many hours would the student in part (a) need to study to have a 50% chance of getting [5] CO5 an A in the class.

:::::19/07/2022:::::